1
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Stefaniak-Napieralska M, Walczyński K, Iwan M, Korga-Plewko A, Szałaj N, Więckowska A, Staszewski M. Preliminary studies of 1,5-benzoxazepine derivatives as potential histamine H 3 receptor antagonists. Future Med Chem 2024; 16:197-204. [PMID: 38189171 DOI: 10.4155/fmc-2023-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Aims: Our research aimed to evaluate how the rigidification of the characteristic 3-aminopropyloxy linker by incorporating it into 1,5-benzoxazepines affects the potency of histamine H3 receptor (H3R) antagonists/inverse agonists. This research constitutes a starting point for the full characterization of the pharmacological properties of this group of compounds. Materials & methods: Several 1,5-benzoxazepine derivatives were synthesized and pharmacologically tested as potential H3R antagonist/inverse agonists. In a addition, the effect of the derivatives on acetylcholinesterase and butyrylcholinesterase inhibition and cytotoxicity were tested. Results: The studies indicated 1,5-benzoxazepine containing three carbon side chains as a compound for further modification. Conclusion: Further optimization of the lead structure is necessary, which will favorably affect biological targets.
Collapse
Affiliation(s)
| | - Krzysztof Walczyński
- Department of Synthesis & Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Magdalena Iwan
- Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Marek Staszewski
- Department of Synthesis & Technology of Drugs, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland
| |
Collapse
|
3
|
Olszewska B, Stasiak A, McNaught Flores D, Fogel WA, Leurs R, Walczyński K. 4-Hydroxypiperidines and Their Flexible 3-(Amino)propyloxy Analogues as Non-Imidazole Histamine H₃ Receptor Antagonist: Further Structure⁻Activity Relationship Exploration and In Vitro and In Vivo Pharmacological Evaluation. Int J Mol Sci 2018; 19:ijms19041243. [PMID: 29671795 PMCID: PMC5979327 DOI: 10.3390/ijms19041243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 11/30/2022] Open
Abstract
Presynaptic histamine H3 receptors (H3R) act as auto- or heteroreceptors controlling, respectively, the release of histamine and of other neurotransmitters in the central nervous system (CNS). The extracellular levels of several neurotransmitters are enhanced by H3R antagonists, and there is a great interest for potent, brain-penetrating H3 receptor antagonists/inverse agonists to compensate for the neurotransmitter deficits present in various neurological disorders. We have shown that 1-[(benzylfuran-2-yl)methyl]piperidinyl-4-oxyl- and benzyl- derivatives of N-propylpentan-1-amines exhibit high in vitro potencies toward the guinea pig H3 receptor (jejunum), with pA2 = 8.47 and 7.79, respectively (the reference compound used was thioperamide with pA2 = 8.67). Furthermore, following the replacement of 4-hydroxypiperidine with a 3-(methylamino)propyloxy chain, the pA2 value for the first group decreased, whereas it increased for the second group. Here, we present data on the impact of elongating the aliphatic chain between the nitrogen of 4-hydroxypiperidine or 3-(methylamino)propan-1-ol and the lipophilic residue. Additionally, the most active compound in this series of non-imidazole H3 receptor antagonists/inverse agonists, i.e., ADS-003, was evaluated for its affinity to the recombinant rat and human histamine H3 receptors transiently expressed in HEK-293T cells. It was shown that ADS-003, given parenterally for 5 days, reduced the food intake of rats, as well as changed histamine and noradrenaline concentrations in the rats’ brain in a manner and degree similar to the reference H3 antagonist Ciproxifan.
Collapse
Affiliation(s)
- Beata Olszewska
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego Street 1, 90-145 Łódź, Poland.
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Żeligowskiego Street 7/9, 90-752 Łódź, Poland.
| | - Daniel McNaught Flores
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Wiesława Agnieszka Fogel
- Department of Hormone Biochemistry, Medical University of Lodz, Żeligowskiego Street 7/9, 90-752 Łódź, Poland.
| | - Rob Leurs
- Amsterdam Institute of Molecules, Medicines & Systems, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Muszyńskiego Street 1, 90-145 Łódź, Poland.
| |
Collapse
|
4
|
|
5
|
Beliaev A, Ferreira HS, Learmonth DA, Bonifácio MJ, Torrão L, Pires NM, Soares-da-Silva P, Kiss LE. Synthesis and structure–activity relationships of ionizable 1,3,4-oxadiazol-2(3H)-ones as peripherally selective FAAH inhibitors with improved aqueous solubility. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNovel 5-(2,4-difluorophenoxy)-3-aryl-1,3,4-oxadiazol-2(3H)-ones were prepared and in vivo SAR are discussed. Ionisable substituents on the N-phenyl ring provided compounds with significantly improved aqueous solubility. In addition, these analogues retained equivalent or improved potency against FAAH enzyme compared to the parent phenols 2–3. FAAH inhibition by the 2-(piperazin-1-yl)ethyl and 3-(piperazin-1-yl)propyl derivatives 24 and 30 was confined to the periphery in mice (30 mg/kg), whereas hepatic FAAH activity was inhibited by over 90%.
Collapse
Affiliation(s)
- Alexandre Beliaev
- 1Laboratory of Chemistry, Department of Research and Development, BIAL – Portela and Cª., S.A., Coronado (S. Romão e S. Mamede), Portugal
| | - Humberto S. Ferreira
- 1Laboratory of Chemistry, Department of Research and Development, BIAL – Portela and Cª., S.A., Coronado (S. Romão e S. Mamede), Portugal
| | - David A. Learmonth
- 2Stemmatters, Biotecnologia e Medicina Regenerativa S.A., 4805-017 Guimarães, Portugal
| | - Maria João Bonifácio
- 3Laboratory of Pharmacology, Department of Research and Development, BIAL – Portela and Cª., S.A., Coronado (S. Romão e S. Mamede), Portugal
| | - Leonel Torrão
- 3Laboratory of Pharmacology, Department of Research and Development, BIAL – Portela and Cª., S.A., Coronado (S. Romão e S. Mamede), Portugal
| | - Nuno M. Pires
- 3Laboratory of Pharmacology, Department of Research and Development, BIAL – Portela and Cª., S.A., Coronado (S. Romão e S. Mamede), Portugal
| | | | - László E. Kiss
- 1Laboratory of Chemistry, Department of Research and Development, BIAL – Portela and Cª., S.A., Coronado (S. Romão e S. Mamede), Portugal
| |
Collapse
|