1
|
Zhi X, Sun Y, Cai F, Wang S, Gao H, Wu F, Zhang L, Shen Z. Oxidized Low-Density Lipoprotein (Ox-LDL)-Triggered Double-Lock Probe for Spatiotemporal Lipoprotein Oxidation and Atherosclerotic Plaque Imaging. Adv Healthc Mater 2023; 12:e2301595. [PMID: 37557912 DOI: 10.1002/adhm.202301595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Low-density lipoprotein (LDL), especially oxidative modified LDL (Ox-LDL), is the key risk factor for plaque accumulation and the development of cardiovascular disease. Herein, a highly specific Ox-LDL-triggered fluorogenic-colorimetric probe Pro-P1 is developed for visualizing the oxidation and aggregation progress of lipoproteins and plaque. A series of green fluorescent protein chromophores with modified donor-acceptor structures, containing carbazole as an electron donor and various substituents including pyridine-vinyl (P1), phenol-vinyl (P2), N, N-dimethylaniline-vinyl (P3), and thiophene-vinyl (P4), have been synthesized and evaluated. Emission spectroscopy and theoretical calculations of P1-P4 indicate that P1 shows enhanced green fluorescence (λem = 560 nm) by inhibiting its twisted intramolecular charge transfer in the presence of Ox-LDL. This feature allows the selection of P1 as a sensitive probe to directly visualize ferroptosis and Cu2+ -mediated LDL oxidative aggregation via in situ formation of fluorophore-bound Ox-LDL in living cells. The red-emissive probe Pro-P1 (λem = 660 nm) is prepared via borate protection of P1, which can be cleaved into P1 under high expression of HOCl and Ox-LDL condition at the lesion site, resulting in enhanced green emission. The plaque area and size with clear boundaries can be delineated by colorimetric fluorescence imaging and fluorescence lifetime imaging with precise differentiation.
Collapse
Affiliation(s)
- Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangjian Cai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Wang A, Yue K, Zhong W, Zhang G, Wang L, Wang H, Zhang H, Zhang X. Ligand-receptor interaction in the specific targeting of biomimetic peptide nanoparticles to lysophosphatidylcholine. Int J Biol Macromol 2023; 227:193-202. [PMID: 36549027 DOI: 10.1016/j.ijbiomac.2022.12.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
As nanotechnology is applied clinical medicine, nanoparticle-based therapy is emerging as a novel approach for the treatment of atherosclerosis. Ligand-receptor interaction affects the effectiveness of nanoparticle targeting therapy. In this study, the biomimetic peptide (BP-KFFVLK-WYKDGD) ligand specifically targeting the lysophosphatidylcholine (LPC) receptor in atherosclerotic plaques was constructed. The corresponding ligand-receptor interaction under different pH values was investigated by molecular dynamics simulation and experimental measurements. Results show that the interaction force between the peptide and LPC is greater than that of the peptide and human umbilical vein endothelial cell, clearly demonstrating the specific targeting of the peptide ligand to the LPC receptor. The ligand-receptor binding of peptide and LPC dominantly depends on Coulomb and van der Waals interactions. The YKDG amino acids of the peptide are the main fragment that binds to LPC. Compared with neutral environment at pH 7.4, the interaction forces between the peptide and oxidized low-density lipoprotein (oxLDL) decreased by 18.22 % and 45.87 % under acidic environments at pH 6.5 and 5.5, respectively, because of the change in oxLDL secondary structure and the release of LPC from oxLDL. Nevertheless, the peptide still has a strong binding capacity with oxLDL for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
3
|
Sato A, Ebina K. An in Vitro Method to Assess Oxidative Status of Low-Density Lipoprotein Using Fluorescence-Labeled Heptapeptides. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Akira Sato
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Keiichi Ebina
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| |
Collapse
|
4
|
Sato A, Unuma H, Ebina K. Royal Jelly Proteins Inhibit Macrophage Proliferation: Interactions with Native- and Oxidized-Low Density Lipoprotein. Protein J 2021; 40:699-708. [PMID: 34008140 DOI: 10.1007/s10930-021-09998-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Macrophage proliferation is known to correlate with macrophage accumulation in atherosclerotic plaque, and therefore its inhibition and secondary reduction of plaque inflammation may have therapeutic beneficial effects on atherosclerosis. Recently, we reported that a peptide corresponding to positions 41-51 of royalisin (which consists of 51 amino acid residues), a potent antibacterial protein contained in royal jelly (RJ), can specifically bind to oxidized LDL (Ox-LDL), a major components of atherosclerotic lesions. Here, we investigated the interaction of RJ proteins including royalisin with LDL and Ox-LDL. Measurement of LDL oxidation by the production of thiobarbituric acid reactive substances and conjugated dienes, and by electrophoretic mobility on polyacrylamide gel electrophoresis showed that RJ proteins including royalisin and the degradation products of major RJ protein (MRJP) 1 and MRJP3 can induce oxidation of LDL and Ox-LDL. Surface plasmon resonance experiments showed that these RJ proteins can exhibit much higher binding affinity to LDL than Ox-LDL (the equilibrium dissociation constant, KD = 8.35 and 49.65 μg proteins/mL for LDL and Ox-LDL, respectively). Experiments using cultured mouse J774A.1 macrophage cells proved that these RJ proteins can inhibit macrophage proliferation markedly and concentration-dependently, regardless of the absence or presence of LDL and Ox-LDL, but hardly affect lipid accumulation in macrophages. These results suggest that RJ proteins including royalisin and degradation products of MRJP1/MRJP3 may have therapeutic beneficial effects on atherosclerosis owing to the reduction of plaque inflammation. Further studies of these RJ proteins may lead to the discovery of novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
| | - Hiroto Unuma
- Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
5
|
Sato A, Watanabe H, Yamazaki M, Sakurai E, Ebina K. Interaction of Native- and Oxidized-Low-Density Lipoprotein with Human Estrogen Sulfotransferase. Protein J 2021; 40:192-204. [PMID: 33665770 DOI: 10.1007/s10930-021-09971-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Cytosolic estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfate conjugation of estrogens, which decrease atherosclerosis progression. Recently we reported that a YKEG sequence in human SULT1E1 (hSULT1E1) corresponding to residues 61-64 can bind specifically to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis; its major oxidative lipid component lysophosphatidylcholine (LPC), and its structurally similar lipid, platelet-activating factor (PAF). In this study, we investigated the effect of Ox-LDL on the sulfating activity of hSULT1E1. In vivo experiments using a mouse model of atherosclerosis showed that the protein expression of SULT1E1 was higher in the aorta of mice with atherosclerosis compared with that in control animals. Results from a sulfating activity assay of hSULT1E1 using 1-hydroxypyrene as the substrate demonstrated that Ox-LDL, LPC, and PAF markedly decreased the sulfating activity of hSULT1E1, whereas native LDL and 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) as one of the oxidized phosphatidylcholines showed the opposite effect. The sulfating activity greatly changed in the presence of LPC, PAF, and POVPC in their concentration-dependen manner (especially above their critical micelle concentrations). Moreover, Ox-LDL specifically recognized dimeric hSULT1E1. These results suggest that the effects of Ox-LDL and native LDL on the sulfating activity of hSULT1E1 might be helpful in elucidating the novel mechanism underlying the pathogenesis of atherosclerosis, involving the relationship between estrogen metabolism, LDL, and Ox-LDL.
Collapse
Affiliation(s)
- Akira Sato
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan. .,Graduate School of Life Science and Technology, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
| | - Hinako Watanabe
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Miyuki Yamazaki
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Eiko Sakurai
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
6
|
Sato A, Yamazaki M, Watanabe H, Sakurai E, Ebina K. Human estrogen sulfotransferase and its related fluorescently labeled decapeptides specifically interact with oxidized low-density lipoprotein. J Pept Sci 2020; 26:e3274. [PMID: 32633098 DOI: 10.1002/psc.3274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfation of estrogens, which are known to prevent the pathogenesis of atherosclerosis. Recently, we found that peptides with a YKDG sequence specifically bind to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis. Here, we investigated the interaction between human SULT1E1 (hSULT1E1), which has a YKEG sequence (residues 61-64) unlike other human SULTs, and Ox-LDL. Results from polyacrylamide gel electrophoresis and western blotting demonstrated that hSULT1E1 specifically binds to Ox-LDL and its major lipid component (lysophosphatidylcholine; LPC), and platelet-activating factor (PAF), which bears a marked resemblance to LPC in terms of structure and activity. Moreover, an N-terminally fluorescein isothiocyanate (FITC)-labeled decapeptide (MIYKEGDVEK; FITC-hSULT1E1-P10) corresponding to residues 59-68 of hSULT1E1 specifically binds to Ox-LDL, LPC, and PAF. Unveiling the specific interaction between hSULT1E1 and Ox-LDL, LPC, and PAF provides important information regarding the mechanisms underlying various diseases caused by Ox-LDL, LPC, and PAF, such as atherosclerosis. In addition, FITC-hSULT1E1-P10 could be used as an efficient fluorescent probe for the detection of Ox-LDL, LPC, and PAF, which could facilitate the mechanistic study, identification, diagnosis, prevention, and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Akira Sato
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Miyuki Yamazaki
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Hinako Watanabe
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Eiko Sakurai
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| | - Keiichi Ebina
- Department of Pharmaceutical Health Science, Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima, Japan.,Graduate School of Life Science and Technology, Iryo Sosei University, Iwaki, Fukushima, Japan
| |
Collapse
|
7
|
Sato A, Nakazawa K, Sugawara A, Yamazaki Y, Ebina K. The interaction of β 2-glycoprotein I with lysophosphatidic acid in platelet aggregation and blood clotting. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1232-1241. [PMID: 30312773 DOI: 10.1016/j.bbapap.2018.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 02/09/2023]
Abstract
β2-Glycoprotein I (β2-GPI) is a plasma protein that binds to oxidized low-density lipoprotein (LDL) and negatively charged substances, and inhibits platelet activation and blood coagulation. In this study, we investigated the interaction of β2-GPI with a negatively charged lysophosphatidic acid (LPA) in platelet aggregation and blood clotting. Two negatively charged lysophospholipids, LPA and lysophosphatidylserine, specifically inhibited the binding of β2-GPI to oxidized LDL in a concentration-dependent manner. Intrinsic tryptophan fluorescence studies demonstrated that emission intensity of β2-GPI decreases in an LPA-concentration-dependent manner without a shift in wavelength maxima. LPA specifically induced the aggregation of β2-GPI in phosphate-buffered saline, and in incubated plasma and serum, both of which are known to accumulate LPA by the action of lecithin-cholesterol acyltransferase and lysophospholipase D/autotaxin. β2-GPI aggregated by LPA did not inhibit activated von Willebrand factor-induced aggregation, and did not prolong the activated partial thromboplastin time in blood plasma, in contrast to non-aggregated β2-GPI. These results suggest that β2-GPI aggregated by the binding to LPA fails to inhibit platelet aggregation and blood clotting in contrast to non-aggregated β2-GPI.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan.
| | - Keiju Nakazawa
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Ayano Sugawara
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Yoji Yamazaki
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| |
Collapse
|
8
|
Sato A, Unuma H, Yamazaki Y, Ebina K. A fluorescently labeled undecapeptide derived from a protein in royal jelly of the honeybee-royalisin-for specific detection of oxidized low-density lipoprotein. J Pept Sci 2018; 24:e3072. [PMID: 29602217 DOI: 10.1002/psc.3072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/14/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
The probes for detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to facilitate the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that a heptapeptide (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled through the ε-amino group of N-terminal Lys to fluorescein isothiocyanate (FITC), (FITC)KP6, can be useful as a fluorescent probe for specific detection of ox-LDL. In the present study, to develop a novel fluorescent peptide for specific detection of ox-LDL, we investigated the interaction (with ox-LDL) of an undecapeptide corresponding to positions 41 to 51 of a potent antimicrobial protein (royalisin, which consists of 51 residues; from royal jelly of honeybees), conjugated at the N-terminus to FITC in the presence of 6-amino-n-caproic acid (AC) linker, (FITC-AC)-royalisin P11, which contains both sequences, Phe-Lys-Asp and Asp-Lys-Tyr, similar to Tyr-Lys-Asp in (FITC)KP6. The (FITC-AC)-royalisin P11 bound with high specificity to ox-LDL in a dose-dependent manner, through the binding to major lipid components in ox-LDL (lysophosphatidylcholine and oxidized phosphatidylcholine). In contrast, a (FITC-AC)-shuffled royalisin P11 peptide, in which sequences Phe-Lys-Asp and Asp-Lys-Tyr were modified to Lys-Phe-Asp and Asp-Tyr-Lys, respectively, hardly bound to LDL and ox-LDL. These findings strongly suggest that (FITC-AC)-royalisin P11 may be an effective fluorescent probe for specific detection of ox-LDL and that royalisin from the royal jelly of honeybees may play a role in the treatment of atherosclerosis through the specific binding of the region at positions 41 to 51 to ox-LDL.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Hiroto Unuma
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Yoji Yamazaki
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
9
|
A Method for In Vitro Measurement of Oxidized Low-Density Lipoprotein in Blood, Using Its Antibody, Fluorescence-Labeled Heptapeptide and Polyethylene Glycol. J Fluoresc 2017; 27:1985-1993. [DOI: 10.1007/s10895-017-2137-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/30/2017] [Indexed: 01/15/2023]
|
10
|
Sato A, Ueda C, Kimura R, Kobayashi C, Yamazaki Y, Ebina K. Angiotensin II induces the aggregation of native and oxidized low-density lipoprotein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:1-9. [PMID: 28401261 DOI: 10.1007/s00249-017-1208-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 12/30/2022]
Abstract
Modifications of low-density lipoprotein (LDL), such as oxidation and aggregation, and angiotensin (Ang) peptides are involved in the pathogenesis of atherosclerosis. Here, we investigated the relationship between one of the Ang peptides, AngII, and two LDL modifications, oxidation and aggregation. Using polyacrylamide gel electrophoresis and aggregation assays, we noted that AngII markedly induced the aggregation of LDL and oxidized LDL (Ox-LDL), and bound to both the aggregated and non-aggregated forms. In contrast, a peptide (AngIII) formed by deletion of N-terminal Asp of AngII induced the aggregation of Ox-LDL but not LDL. From tyrosine fluorescence measurements, we noted that AngII interacted with two major lipid components in LDL and Ox-LDL, phosphatidylcholine (PC) and oxidized PC, while AngIII interacted with oxidized PC, but not with PC and lysophosphatidylcholine. Moreover, results from thiobarbituric acid-reactive substances assay proved that AngII did not induce oxidation of LDL. These results suggest that AngII can be involved in the pathogenesis of atherosclerosis by binding to LDL and Ox-LDL-especially to the major lipid components, PC and oxidized PC-followed by inducing the aggregation of LDL and Ox-LDL and that the N-terminal Asp of AngII is important for the binding and aggregation specificity of LDL and Ox-LDL.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
| | - Chiemi Ueda
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Ryu Kimura
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Chisato Kobayashi
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Yoji Yamazaki
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
11
|
A Fluorescence-Labeled Heptapeptide, (FITC)KP6, as an Efficient Probe for the Specific Detection of Oxidized and Minimally Modified Low-Density Lipoprotein. J Fluoresc 2016; 26:1141-50. [PMID: 27063871 DOI: 10.1007/s10895-016-1808-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Two oxidized forms of low-density lipoprotein (LDL), oxidized LDL (ox-LDL) and minimally modified LDL (MM-LDL), are believed to play a major role in the pathogenesis of atherosclerosis. Recently, we reported that a heptapeptide (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled through the ε-amino group of N-terminus Lys to fluorescein isothiocyanate, (FITC)KP6, bound to ox-LDL but not to LDL. In the present study, we investigated whether (FITC)KP6 could be used as a fluorescent probe for the specific detection of MM-LDL and ox-LDL. Results from polyacrylamide gel electrophoresis and surface plasmon resonance proved that (FITC)KP6 could efficiently bind to MM-LDL as well as ox-LDL in a dose-dependent manner and with high affinity (K D = 3.16 and 3.54 ng/mL protein for MM-LDL and ox-LDL, respectively). (FITC) KP6 bound to lysophosphatidylcholine and oxidized phosphatidylcholine, both present abundantly in ox-LDL and MM-LDL, respectively. In vitro, (FITC)KP6 was detected on the surface and/or in the cytosol of human THP-1-derived macrophages incubated with ox-LDL and MM-LDL, but not LDL. These results suggest that (FITC)KP6 could be an efficient fluorescent probe for the specific detection of ox-LDL and MM-LDL and can therefore contribute to the identification, diagnosis, prevention, and treatment of atherosclerosis.
Collapse
|
12
|
Sato A, Yokoyama I, Ebina K. Biotinylated heptapeptides substituted with a D-amino acid as platelet-activating factor inhibitors. Eur J Pharmacol 2015; 764:202-207. [PMID: 26142829 DOI: 10.1016/j.ejphar.2015.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Platelet-activating factor (PAF), a potent lipid mediator, is implicated in many inflammatory diseases, and therefore may serve as a direct target for anti-inflammatory drugs. We previously reported that synthetic biotinylated peptides having a Tyr-Lys-Asp-Gly sequence markedly inhibit PAF-induced inflammation by direct binding, and that two synthetic fluorescence-labelled heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp and D-Lys-Trp-Tyr-Lys-Asp-Gly-Asp) with high stability in plasma specifically bind to PAF-like lipids (oxidized- and lyso-phosphatidylchoine). In this study, synthetic heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp) coupled to a biotin molecule through the N-terminal amino group and ε-amino group of N-terminus Lys, (Btn)KP6 and K(Btn)P6, respectively, and their biotinylated peptides substituted with D-Lys at the N-terminus, (Btn)dKP6 and dK(Btn)P6, respectively, were investigated for their effects on PAF-induced inflammation. In the experiments using a rat model of hind paw oedema, (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 significantly inhibited PAF-induced paw oedema, with the highest inhibitory effect exhibited by dK(Btn)P6. The inhibitory effect of D-Tyr-D-Lys-D-Asp-Gly tetrapeptide on PAF-induced paw oedema was much lower than that of Tyr-Lys-Asp-Gly tetrapeptide. In the experiments using tryptophan fluorescence spectroscopy, (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 bound to PAF dose-dependently, with dK(Btn)P6 showing the strongest binding affinity, indicating that its affinity appears to be closely correlated with its inhibitory effect on PAF-induced inflammation. These results suggest that direct binding of (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 to PAF can lead to marked inhibition of PAF-induced inflammation, and these agents, particularly dK(Btn)P6, may be useful as anti-inflammatory drugs targeting PAF with high stability in plasma.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan.
| | - Izumi Yokoyama
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| |
Collapse
|
13
|
Sato A, Yamanaka H, Oe K, Yokoyama I, Yamazaki Y, Ebina K. Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chem Biol Drug Des 2014; 85:348-55. [PMID: 25066364 DOI: 10.1111/cbdd.12399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/03/2014] [Accepted: 07/23/2014] [Indexed: 01/02/2023]
Abstract
Probes that can detect oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques can be useful for the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that two heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled to fluorescein isothiocyanate (FITC) through the ε-amino group of N-terminus Lys in the absence/presence of 6-amino-n-caproic acid (AC) linker to FITC-(FITC)KP6 and (FITC-AC)KP6-can be useful as fluorescent probes for the specific detection of ox-LDL. In this study, to develop the fluorescent peptides with high plasma stability for the specific detection of ox-LDL, we investigated the interaction of (FITC)KP6 and (FITC-AC)KP6 substituted with D-Lys at the N-terminus-(FITC)dKP6 and (FITC-AC)dKP6-with ox-LDL, and the in vitro stability of these peptides in mouse plasma. (FITC)dKP6 and (FITC-AC)dKP6 bound with high specificity to ox-LDL in a dose-dependent manner, and also to ox-LDL in the mouse plasma. Furthermore, (FITC)dKP6 was more stable than (FITC)KP6 in mouse plasma (102.1% versus 69.0% remained after 1 h). These findings strongly suggest that (FITC)dKP6 and (FITC-AC)dKP6 may be effective fluorescent probes with higher plasma stability than (FITC)KP6 and (FITC-AC)KP6 for the specific detection of ox-LDL.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | | | | | | | | | | |
Collapse
|