1
|
Olawuni B, Bode BP. Asparagine as a signal for glutamine sufficiency via asparagine synthetase: a fresh evidence-based framework in physiology and oncology. Am J Physiol Cell Physiol 2024; 327:C1335-C1346. [PMID: 39344414 DOI: 10.1152/ajpcell.00316.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Among the 20 proteinogenic amino acids, glutamine (GLN) and asparagine (ASN) represent a unique cohort in containing a terminal amide in their side chain, and share a direct metabolic relationship, with glutamine generating asparagine through the ATP-dependent asparagine synthetase (ASNS) reaction. Circulating glutamine levels and metabolic flux through cells and tissues greatly exceed those for asparagine, and "glutamine addiction" in cancer has likewise received considerable attention. However, historic and recent evidence collectively suggest that in spite of its modest presence, asparagine plays an outsized regulatory role in cellular function. Here, we present a unifying evidence-based hypothesis that the amides constitute a regulatory signaling circuit, with glutamine as a driver and asparagine as a second messenger that allosterically regulates key biochemical and physiological functions, particularly cell growth and survival. Specifically, it is proposed that ASNS serves as a sensor of substrate sufficiency for S-phase entry and progression in proliferating cells. ASNS-generated asparagine serves as a subsequent second messenger that modulates the activity of key regulatory proteins and promotes survival in the face of cellular stress, and serves as a feed-forward driver of S-phase progression in cell growth. We propose that this signaling pathway be termed the amide signaling circuit (ASC) in homage to the SLC1A5-encoded ASCT2 that transports both glutamine and asparagine in a bidirectional manner, and has been implicated in the pathogenesis of a broad spectrum of human cancers. Support for the ASC model is provided by the recent discovery that glutamine is sensed in primary cilia via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Babatunde Olawuni
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
| | - Barrie P Bode
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States
- Division of Research and Innovation Partnerships, Northern Illinois University, DeKalb, Illinois, United States
| |
Collapse
|
2
|
Chen J, Wang D, Wang B, Zhou C, Ding CF, Yan Y. Ti 4+ functionalized zirconium metal-organic frameworks with polymer brushes for specific identification of phosphopeptides in human serum and skimmed milk. Anal Bioanal Chem 2024; 416:4491-4501. [PMID: 38877148 DOI: 10.1007/s00216-024-05388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
In the present study, click chemistry and Schiff base reactions were simultaneously applied to prepare polymer brush (PEG)-functionalized MOF materials (UiO-66-NH2) and immobilized with Ti4+ (MOF-Brush-THBA-Ti4+) for phosphopeptide analysis. The material has a detection limit of 0.5 fmol, a selectivity of 2000:1, and a loading capacity of 133 mg/g for phosphopeptides. It also demonstrated great repeatability (10 cycles) and recovery rate (96.7 ± 1.4%). During the analysis of bio-samples, 4 specific phosphopeptides were identified in endogenous breast cancer serum, while 11 phosphopeptides were identified in skimmed milk. Moreover, 47 phosphopeptides correlated with 29 phosphorylated proteins were selectively identified from normal control serum, and 66 phosphopeptides correlated with 26 phosphorylated proteins were identified from breast cancer serum. Further analysis of gene ontology (GO) revealed that the detected phosphorylated proteins associated with breast cancer included positive regulation of receptor-mediated endocytosis, proteolysis, extracellular exosome, heparin binding, and chaperone binding. These findings suggest that these associated pathways might contribute to the etiology of breast cancer. Overall, this application exhibits enormous potential in the identification of phosphorylated peptides within bio-samples.
Collapse
Affiliation(s)
- Jiakai Chen
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Danni Wang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Bing Wang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, No. 247 Renmin Road, Jiangbei District, Ningbo, 315020, China.
| | - Chuan-Fan Ding
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Fontes MG, Silva C, Roldán WH, Monteiro G. Exploring the potential of asparagine restriction in solid cancer treatment: recent discoveries, therapeutic implications, and challenges. Med Oncol 2024; 41:176. [PMID: 38879707 DOI: 10.1007/s12032-024-02424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Asparagine is a non-essential amino acid crucial for protein biosynthesis and function, and therefore cell maintenance and growth. Furthermore, this amino acid has an important role in regulating several metabolic pathways, such as tricarboxylic acid cycle and the urea cycle. When compared to normal cells, tumor cells typically present a higher demand for asparagine, making it a compelling target for therapy. In this review article, we investigate different facets of asparagine bioavailability intricate role in malignant tumors raised from solid organs. We take a comprehensive look at asparagine synthetase expression and regulation in cancer, including the impact on tumor growth and metastasis. Moreover, we explore asparagine depletion through L-asparaginase as a potential therapeutic method for aggressive solid tumors, approaching different formulations of the enzyme and combinatory therapies. In summary, here we delve into studies about endogenous and exogenous asparagine availability in solid cancers, analyzing therapeutic implications and future challenges.
Collapse
Affiliation(s)
- Marina Gabriel Fontes
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - William Henry Roldán
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Sania A, Muhammad MA, Sajed M, Azim N, Ahmad N, Aslam M, Tang XF, Rashid N. Structural and functional analyses of an L-asparaginase from Geobacillus thermopakistaniensis. Int J Biol Macromol 2024; 263:130438. [PMID: 38408579 DOI: 10.1016/j.ijbiomac.2024.130438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of β-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of β-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naseema Azim
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
5
|
Yuan Q, Yin L, He J, Zeng Q, Liang Y, Shen Y, Zu X. Metabolism of asparagine in the physiological state and cancer. Cell Commun Signal 2024; 22:163. [PMID: 38448969 PMCID: PMC10916255 DOI: 10.1186/s12964-024-01540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Asparagine, an important amino acid in mammals, is produced in several organs and is widely used for the production of other nutrients such as glucose, proteins, lipids, and nucleotides. Asparagine has also been reported to play a vital role in the development of cancer cells. Although several types of cancer cells can synthesise asparagine alone, their synthesis levels are insufficient to meet their requirements. These cells must rely on the supply of exogenous asparagine, which is why asparagine is considered a semi-essential amino acid. Therefore, nutritional inhibition by targeting asparagine is often considered as an anti-cancer strategy and has shown success in the treatment of leukaemia. However, asparagine limitation alone does not achieve an ideal therapeutic effect because of stress responses that upregulate asparagine synthase (ASNS) to meet the requirements for asparagine in cancer cells. Various cancer cells initiate different reprogramming processes in response to the deficiency of asparagine. Therefore, it is necessary to comprehensively understand the asparagine metabolism in cancers. This review primarily discusses the physiological role of asparagine and the current progress in the field of cancer research.
Collapse
Affiliation(s)
- Qiong Yuan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiting Zeng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Liang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
6
|
Tomar MS, Kumar A, Shrivastava A. Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance. Biochem Biophys Res Commun 2024; 694:149382. [PMID: 38128382 DOI: 10.1016/j.bbrc.2023.149382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Glycolysis is the fundamental cellular process that permits cancer cells to convert energy and grow anaerobically. Recent developments in molecular biology have made it evident that mitochondrial respiration is critical to tumor growth and treatment response. As the principal organelle of cellular energy conversion, mitochondria can rapidly alter cellular metabolic processes, thereby fueling malignancies and contributing to treatment resistance. This review emphasizes the significance of mitochondrial biogenesis, turnover, DNA copy number, and mutations in bioenergetic system regulation. Tumorigenesis requires an intricate cascade of metabolic pathways that includes rewiring of the tricarboxylic acid (TCA) cycle, electron transport chain and oxidative phosphorylation, supply of intermediate metabolites of the TCA cycle through amino acids, and the interaction between mitochondria and lipid metabolism. Cancer recurrence or resistance to therapy often results from the cooperation of several cellular defense mechanisms, most of which are connected to mitochondria. Many clinical trials are underway to assess the effectiveness of inhibiting mitochondrial respiration as a potential cancer therapeutic. We aim to summarize innovative strategies and therapeutic targets by conducting a comprehensive review of recent studies on the relationship between mitochondrial metabolism, tumor development and therapeutic resistance.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, 462020, Madhya Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
7
|
Wu Z, Wu Z, Zeng J, Liu Y, Wang Y, Li H, Xia T, Liu W, Lin Z, Xu W. An endoplasmic reticulum stress-related signature featuring ASNS for predicting prognosis and immune landscape in prostate cancer. Aging (Albany NY) 2024; 16:43-65. [PMID: 38206293 PMCID: PMC10817364 DOI: 10.18632/aging.205280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/15/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer (PRAD) is one of the common malignant tumors of the urinary system. In order to predict the treatment results for PRAD patients, this study proposes to develop a risk profile based on endoplasmic reticulum stress (ERS). Based on the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort and the Gene Expression Omnibus database (GSE70769), we verified the predictive signature. Using a random survival forest analysis, prognostically significant ERS-related genes were found. An ERS-related risk score (ERscore) was created using multivariable Cox analysis. In addition, the biological functions, genetic mutations and immune landscape related to ERscore are also studied to reveal the underlying mechanisms related to ERS in PRAD. We further explored the ERscore-related mechanisms by profiling a single-cell RNA sequencing (scRNA-seq) dataset (GSE137829) and explored the oncogenic role of ASNS in PRAD through in vitro experiments. The risk signature composed of eight ERS-related genes constructed in this study is an independent prognostic factor and validated in the MSKCC and GSE70769 data sets. The scRNA-seq data additionally revealed that several carcinogenic pathways were noticeably overactivated in the group with high ERS scores. As one of the prognostic genes, ASNS will significantly inhibit the proliferation, migration and invasion abilities of PRAD cells after its expression is interfered with. In conclusion, this study developed a novel risk-specific ERS-based clinical treatment strategy for patients with PRAD.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| | - Zhenquan Wu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| | - Jie Zeng
- Department of Thoracic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, P.R. China
| | - Yaxuan Liu
- Department of Blood Transfusion, Shenzhen Hospital Affiliated to Southern Medical University, Shenzhen, P.R. China
| | - Yue Wang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, P.R. China
| | - Huixin Li
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| | - Taolin Xia
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| | - Weitao Liu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| | - Zhe Lin
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| | - Wenfeng Xu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, P.R. China
| |
Collapse
|
8
|
Zheng S, Ji R, He H, Li N, Han C, Han J, Li X, Zhang L, Wang Y, Zhao W. NUCKS1, a LINC00629-upregulated gene, facilitated osteosarcoma progression and metastasis by elevating asparagine synthesis. Cell Death Dis 2023; 14:489. [PMID: 37528150 PMCID: PMC10393983 DOI: 10.1038/s41419-023-06010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) has been reported to play an oncogenic role in several cancers. However, the biological functions and regulatory mechanism of NUCKS1 in osteosarcoma have not been fully understood. In this study, we reported that NUCKS1 was significantly increased in osteosarcoma. Depletion of NUCKS1 decreased osteosarcoma cell proliferation and metastasis in vivo and in vitro. Overexpression of NUCKS1 accelerated osteosarcoma cell aggressiveness. Mechanistically, NUCKS1 facilitated asparagine (Asn) synthesis by transcriptionally upregulating asparagine synthetase (ASNS) expression and elevating the levels of Asn in osteosarcoma cells, leading to increased cell growth and metastasis. Inhibition of ASNS or reduction of Asn decreased osteosarcoma cell aggressiveness and impaired the promoting effects of NUCKS1 on tumorigenesis and metastasis. Furthermore, we also found that by acting as a sponge for miR-4768-3p, LINC00629 promoted NUCKS1 expression. Collectively, our findings highlight the role of NUCKS1 in regulating asparagine metabolism and reveal that LINC00629 is an important regulator of NUCKS1 that contributes to NUCKS1 upregulation in osteosarcoma.
Collapse
Affiliation(s)
- Shuo Zheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Renchen Ji
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Hongtao He
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China
| | - Jian Han
- Department of Orthopedics, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, 116033, P.R. China
| | - Xiaodong Li
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Lu Zhang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Yuan Wang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| | - Wenzhi Zhao
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116044, P.R. China.
| |
Collapse
|
9
|
Potential Therapies Targeting the Metabolic Reprogramming of Diabetes-Associated Breast Cancer. J Pers Med 2023; 13:jpm13010157. [PMID: 36675817 PMCID: PMC9861470 DOI: 10.3390/jpm13010157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In recent years, diabetes-associated breast cancer has become a significant clinical challenge. Diabetes is not only a risk factor for breast cancer but also worsens its prognosis. Patients with diabetes usually show hyperglycemia and hyperinsulinemia, which are accompanied by different glucose, protein, and lipid metabolism disorders. Metabolic abnormalities observed in diabetes can induce the occurrence and development of breast cancer. The changes in substrate availability and hormone environment not only create a favorable metabolic environment for tumorigenesis but also induce metabolic reprogramming events required for breast cancer cell transformation. Metabolic reprogramming is the basis for the development, swift proliferation, and survival of cancer cells. Metabolism must also be reprogrammed to support the energy requirements of the biosynthetic processes in cancer cells. In addition, metabolic reprogramming is essential to enable cancer cells to overcome apoptosis signals and promote invasion and metastasis. This review aims to describe the major metabolic changes in diabetes and outline how cancer cells can use cellular metabolic changes to drive abnormal growth and proliferation. We will specifically examine the mechanism of metabolic reprogramming by which diabetes may promote the development of breast cancer, focusing on the role of glucose metabolism, amino acid metabolism, and lipid metabolism in this process and potential therapeutic targets. Although diabetes-associated breast cancer has always been a common health problem, research focused on finding treatments suitable for the specific needs of patients with concurrent conditions is still limited. Most studies are still currently in the pre-clinical stage and mainly focus on reprogramming the glucose metabolism. More research targeting the amino acid and lipid metabolism is needed.
Collapse
|
10
|
Biochemical characterization and detection of antitumor activity of l-asparaginase from thermophilic Geobacillus kaustophilus DSM 7263 T. Protein Expr Purif 2022; 199:106146. [PMID: 35863721 DOI: 10.1016/j.pep.2022.106146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022]
Abstract
L-asparaginases, which are oncolytic enzymes, have been used in clinical applications for many years. These enzymes are also important in food processing industry due to their potential in acrylamide-mitigation. In this study, the gene for l-asparaginase (GkASN) from a thermophilic bacterium, Geobacillus kaustophilus, was cloned and expressed in E. coli Rosetta™2 (DE3) cells utilizing the pET-22b(+) vector. The 6xHis-tag attached enzyme was purified and analyzed both biochemically and structurally. The molecular mass of GkASN was determined as ∼36 kDa by SDS-PAGE, Western Blotting, and MALDI-TOF MS analyses. Optimum temperature and pH for the enzyme was determined as 55 °C and 8.5, respectively. The enzyme retained 89% of its thermal stability at 37 °C and 75% at 55 °C after 6 h of incubation. The enzyme activity was inhibited in the presence of Cu2+, Fe3+, Zn2+, and EDTA, while the activity was enhanced in the presence of Mn2+, Mg2+, and thiol group protective agents such as 2-mercaptoethanol and DTT. The structural modeling analysis demonstrated that the catalytic residues of the enzyme were partially similar to other asparaginases. The therapeutic potential of GkASN was tested on hepatocellular carcinoma cells, a solid cancer type with high mortality rate and rapidly increasing incidence in recent years. We showed that the GkASN-induced asparagine deficiency effectively reduced the metastatic synergy in HCC SNU387 cells on a xCELLigence system with differentiated epithelial Hep3B and poorly differentiated metastatic mesenchymal HCC SNU387 cells.
Collapse
|
11
|
Biochemical and Biological Evaluation of an L-Asparaginase from Isolated Escherichia coli MF-107 as an Anti-Tumor Enzyme on MCF7 Cell Line. IRANIAN BIOMEDICAL JOURNAL 2022; 26:279-90. [PMID: 35690915 PMCID: PMC9432472 DOI: 10.52547/ibj.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
12
|
Prognostic significance of CHAC1 expression in breast cancer. Mol Biol Rep 2022; 49:8517-8526. [PMID: 35729480 DOI: 10.1007/s11033-022-07673-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND An emerging component of Unfolded Protein Response (UPR) pathway, cation transport regulator homolog 1 (CHAC1) has been conferred with the ability to degrade intracellular glutathione and induce apoptosis, however, many reports have suggested a role of CHAC1 in cancer progression. Our study aimed to investigate CHAC1 mRNA levels in large breast cancer datasets using online tools and both mRNA and protein levels in different breast cancer cell lines. METHODS AND RESULTS Analysis of clinical information from various online tools (UALCAN, GEPIA2, TIMER2, GENT2, UCSCXena, bcGenExMiner 4.8, Km Plotter, and Enrichr) was done to elucidate the CHAC1 mRNA expression in large breast cancer patient dataset and its correlation with disease progression. Later, in vitro techniques were employed to explore the mRNA and protein expression of CHAC1 in breast cancer cell lines. Evidence from bioinformatics analysis as well as in vitro studies indicated a high overall expression of CHAC1 in breast tumor samples and had a significant impact on the prognosis and survival of patients. Enhanced CHAC1 levels in the aggressive breast tumor subtypes such as Human Epidermal growth factor receptor 2 (HER2) and Triple Negative Breast Cancer (TNBC) were evident. Our findings hint toward the possible role of CHAC1 in facilitating the aggressiveness of breast cancer and the disease outcome. CONCLUSION In summary, CHAC1 is constantly up-regulated in breast cancer leading to a poor prognosis. CHAC1, therefore, could be a promising candidate in the analysis of breast cancer diagnosis and prognosis.
Collapse
|
13
|
Tang E, Zhou Y, Liu S, Zhang Z, Zhang R, Huang D, Gao T, Zhang T, Xu G. Metabolomic and Transcriptomic Profiling Identified Significant Genes in Thymic Epithelial Tumor. Metabolites 2022; 12:metabo12060567. [PMID: 35736499 PMCID: PMC9228216 DOI: 10.3390/metabo12060567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Thymomas and thymic carcinomas are malignant thymic epithelial tumors (TETs) with poor outcomes if non-resectable. However, the tumorigenesis, especially the metabolic mechanisms involved, is poorly studied. Untargeted metabolomics analysis was utilized to screen for differential metabolic profiles between thymic cancerous tissues and adjunct noncancerous tissues. Combined with transcriptomic data, we comprehensively evaluated the metabolic patterns of TETs. Metabolic scores were constructed to quantify the metabolic patterns of individual tumors. Subsequent investigation of distinct clinical outcomes and the immune landscape associated with the metabolic scores was conducted. Two distinct metabolic patterns and differential metabolic scores were identified between TETs, which were enriched in a variety of biological pathways and correlated with clinical outcomes. In particular, a high metabolic score was highly associated with poorer survival outcomes and immunosuppressive status. More importantly, the expression of two prognostic genes (ASNS and BLVRA) identified from differential metabolism-related genes was significantly associated with patient survival and may play a key role in the tumorigenesis of TETs. Our findings suggest that differential metabolic patterns in TETs are relevant to tumorigenesis and clinical outcome. Specific transcriptomic alterations in differential metabolism-related genes may serve as predictive biomarkers of survival outcomes and potential targets for the treatment of patients with TETs.
Collapse
Affiliation(s)
- Enyu Tang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Yang Zhou
- Department of Cardiac Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China;
| | - Siyang Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Zhiming Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Rixin Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Dejing Huang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Tong Gao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Tianze Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Guangquan Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
- Correspondence:
| |
Collapse
|
14
|
Wang X, Lv Z, Xia H, Guo X, Wang J, Wang J, Liu M. Biochemical recurrence related metabolic novel signature associates with immunity and ADT treatment responses in prostate cancer. Cancer Med 2022; 12:862-878. [PMID: 35681277 PMCID: PMC9844602 DOI: 10.1002/cam4.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a unique cancer from a metabolic perspective. Androgen receptor assumes a vital part in normal and malignant prostate cells regarding almost all aspects of cell metabolism, such as glucose, fat, amino acids, nucleotides, and so on. METHODS We used The Cancer Genome Atlas database as training set, Memorial Sloan-Kettering Cancer Center cohort as validation set, and Gene Expression Omnibus database (GSE70769) as test set to identify the optimal prognostic signature. We evaluated the signature in terms of biochemical progression-free survival (bPFS), ROC curve, clinicopathological features, independent prognostic indicators, tumor microenvironment, and infiltrating immune cells. Nomogram was built dependent on the results of cox regression analyses. GSEA algorithm was used to evaluate differences in metabolism. The signature's prediction of androgen deprivation therapy (ADT) response was validated based on two groups of basic cytological experiments treat with ADT (GSE143408 and GSE120343) and the transcriptional information of pre-ADT/post-ADT of six local PCa patients. RESULTS We finally input four screened genes into the stepwise regression model to construct metabolism-related signature. The signature shows good prediction performance in training set, verification set, and test set. A nomogram based on the PSA, Gleason score, T staging, and the signature risk score could predict 1-, 3-, and 5-year bPFS with the high area under curve values. Based on gene-set enrichment analysis, the characteristics of four genes signature could influence some important metabolic biological processes of PCa and were serendipitously found to be significantly related to androgen response. Subsequently, two cytological experimental data sets and our local patient sequencing data set verified that the signature may be helpful to evaluate the therapeutic response of PCa to ADT. CONCLUSIONS Our systematic study definite a metabolism-related gene signature to foresee prognosis of PCa patients which might add to individual prevention and treatment.
Collapse
Affiliation(s)
- Xuan Wang
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Zhengtong Lv
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Haoran Xia
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Xiaoxiao Guo
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jianye Wang
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jianlong Wang
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Ming Liu
- Department of UrologyBeijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
15
|
Li J, Zhang Z, Lv J, Ma Z, Pan L, Zhang Y. Global Phosphoproteomics Analysis of IBRS-2 Cells Infected With Senecavirus A. Front Microbiol 2022; 13:832275. [PMID: 35154063 PMCID: PMC8826396 DOI: 10.3389/fmicb.2022.832275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation is a widespread posttranslational modification that regulates numerous biological processes. Viruses can alter the physiological activities of host cells to promote virus particle replication, and manipulating phosphorylation is one of the mechanisms. Senecavirus A (SVA) is the causative agent of porcine idiopathic vesicular disease. Although numerous studies on SVA have been performed, comprehensive phosphoproteomics analysis of SVA infection is lacking. The present study performed a quantitative mass spectrometry-based phosphoproteomics survey of SVA infection in Instituto Biologico-Rim Suino-2 (IBRS-2) cells. Three parallel experiments were performed, and 4,520 phosphosites were quantified on 2,084 proteins. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many phosphorylated proteins were involved in apoptosis and spliceosome pathways, and subcellular structure localization analysis revealed that more than half were located in the nucleus. Motif analysis of proteins with differentially regulated phosphosites showed that proline, aspartic acid, and glutamic acid were the most abundant residues in the serine motif, while proline and arginine were the most abundant in the threonine motif. Forty phosphosites on 27 proteins were validated by parallel reaction monitoring (PRM) phosphoproteomics, and 30 phosphosites in 21 proteins were verified. Nine proteins with significantly altered phosphosites were further discussed, and eight [SRRM2, CDK13, DDX20, DDX21, BAD, ELAVL1, PDZ-binding kinase (PBK), and STAT3] may play a role in SVA infection. Finally, kinase activity prediction showed 10 kinases’ activity was reversed following SVA infection. It is the first phosphoproteomics analysis of SVA infection of IBRS-2 cells, and the results greatly expand our knowledge of SVA infection. The findings provide a basis for studying the interactions of other picornaviruses and their mammalian host cells.
Collapse
Affiliation(s)
- Jieyi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- *Correspondence: Zhongwang Zhang,
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Li Pan,
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Gao C, Li H, Zhou C, Liu C, Zhuang J, Liu L, Sun C. Survival-Associated Metabolic Genes and Risk Scoring System in HER2-Positive Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:813306. [PMID: 35663326 PMCID: PMC9161264 DOI: 10.3389/fendo.2022.813306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer and triple-negative breast cancer have their own genetic, epigenetic, and protein expression profiles. In the present study, based on bioinformatics techniques, we explored the prognostic targets of HER2-positive breast cancer from metabonomics perspective and developed a new risk score system to evaluate the prognosis of patients. By identifying the differences between HER2 positive and normal control tissues, and between triple negative breast cancer and normal control tissues, we found a large number of differentially expressed metabolic genes in patients with HER2-positive breast cancer and triple-negative breast cancer. Importantly, in HER2-positive breast cancer, decreased expression of metabolism-related genes ATIC, HPRT1, ASNS, SULT1A2, and HAL was associated with increased survival. Interestingly, these five metabolism-related genes can be used to construct a risk score system to predict overall survival (OS) in HER2-positive patients. The time-dependent receiver operating characteristic (ROC) curve analysis showed that the predictive sensitivity of the risk scoring system was higher than that of other clinical factors, including age, stage, and tumor node metastasis (TNM) stage. This work shows that specific transcriptional changes in metabolic genes can be used as biomarkers to predict the prognosis of patients, which is helpful in implementing personalized treatment and evaluating patient prognosis.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
17
|
Shen Y, Li M, Xiong Y, Gui S, Bai J, Zhang Y, Li C. Proteomics Analysis Identified ASNS as a Novel Biomarker for Predicting Recurrence of Skull Base Chordoma. Front Oncol 2021; 11:698497. [PMID: 34540668 PMCID: PMC8440958 DOI: 10.3389/fonc.2021.698497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 01/29/2023] Open
Abstract
Background The prognostic factors of skull base chordoma associated with outcomes of patients after surgery remain inadequately identified. This study was designed to identify a novel prognostic factor for patients with skull base chordoma. Method Using a proteomic technique, the tumor biomarkers that were upregulated in the rapid-recurrence group of chordoma were screened and then narrowed down by bioinformatic analysis. Finally one potential biomarker was chosen for validation by immunohistochemistry using tissue microarray (TMA). A total of 187 patients included in TMA were randomly divided into two cohorts, the training cohort included 93 patients and the validation cohort included 94 patients. Kaplan-Meier survival analysis was used to assess the patients’ survival. Univariable and multivariable Cox regression analysis were used to identify prognostic factors predicting recurrence-free survival (RFS). CCK-8 assay, clonal formation assay and transwell assay were used to test the effect of asparagine synthetase (ASNS) on the proliferation, migration and invasion in chordoma cell lines. Results Among 146 upregulated proteins, ASNS was chosen as a potential prognostic biomarker after bioinformatics analysis. The H-scores of ASNS ranged from 106.27 to 239.58 in TMA. High expression of ASNS was correlated with shorter RFS in both the training cohort (p = 0.0093) and validation cohort (p < 0.001). Knockdown of ASNS by small interfering RNA (siRNA) inhibited the growth, colony formation, migration and invasion of chordoma cells in vitro. Conclusion This study indicates that high expression of ASNS is correlated with poor prognosis of patients with skull base chordoma. ASNS may be a useful prognostic factor for patients with skull base chordoma.
Collapse
Affiliation(s)
- Yutao Shen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mingxuan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yujia Xiong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chuzhong Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Ilkhani K, Delgir S, Safi A, Seif F, Samei A, Bastami M, Alivand MR. Clinical and In Silico Outcomes of the Expression of miR-130a-5p and miR-615-3p in Tumor Compared with Non-Tumor Adjacent Tissues of Patients with BC. Anticancer Agents Med Chem 2021; 21:927-935. [PMID: 32972352 DOI: 10.2174/1871520620666200924105352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast Cancer (BC) is the most common malignancy among women with a high mortality rate. The blockade of asparagine-related pathways may be an effective measure to control the progression and reduction of BC metastasis potential. Recently, it has been shown that various miRNAs, as part of small non-coding RNAs, have a great role in cancer development, especially asparagine-related pathways, to modulate the invasiveness. OBJECTIVE This study aimed to evaluate the expression of miR-130a-5p and miR-615-3p in tumoral and nontumoral adjacent tissues of patients with BC. METHODS There is a chance that asparagine metabolism is influenced by miR-130a-5p and miR-615-3p as confirmed by bioinformatics analysis. Hence, real-time PCR was conducted on eighty BC tumoral and non-tumoral adjacent tissues to evaluate the expression level of the two miRNAs. To predict the potential biological process and molecular pathways of miR-130a-5p, an in silico analysis was performed. RESULTS This study indicated that miR-130a was downregulated in tumoral tissues compared to non-tumoral adjacent tissues (P-value= 0.01443 and fold change= -2.5137), while miR-615-3p did not show a significant difference between the two groups. Furthermore, the subgroup studies did not reveal any significant correlation between the expression of these two miRNAs and subfactors. Furthermore, in silico studies unraveled several biological processes related to amino-acid metabolism, as well as pathways related to tumor development such as Phosphatase and Tensin Homolog (PTEN) and JAK-STAT pathways among miR-130a-5p target genes. CONCLUSION Our findings indicate that miRNA-130a-5p is downregulated in BC tissues and may play a tumor suppressor role in patients with BC. Therefore, it may be suggested as a potential diagnostic and therapeutic target for BC.
Collapse
Affiliation(s)
- Khandan Ilkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Delgir
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Safi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Azam Samei
- Department of Laboratory Sciences, School of Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Mullins Y, Keogh K, Blackshields G, Kenny DA, Kelly AK, Waters SM. Transcriptome assisted label free proteomics of hepatic tissue in response to both dietary restriction and compensatory growth in cattle. J Proteomics 2020; 232:104048. [PMID: 33217582 DOI: 10.1016/j.jprot.2020.104048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Compensatory growth (CG) is a naturally occurring phenomenon where, following a period of under nutrition, an animal exhibits accelerated growth upon re-alimentation. The objective was to identify and quantify hepatic proteins involved in the regulation of CG in cattle. Forty Holstein Friesian bulls were equally assigned to one of four groups. Groups; A1 and A2 had ad libitum access to feed for 125 days, groups R1 and R2 were feed restricted. Following this, R1 and A1 animals were slaughtered. Remaining animals (R2 and A2) were slaughtered following ad libitum feeding for a successive 55 days. At slaughter hepatic tissue samples were collected and label-free quantitative proteomics undertaken with spectra searched against a custom built transcriptome database specific to the animals in this study. 24 differentially abundant proteins were identified during CG (R2 vs. R1) including; PSPH, ASNS and GSTM1, which are involved in nutrient metabolism, immune response and cellular growth. Proteins involved in biochemical pathways related to nutrient metabolism were down-regulated during CG, indicating a possible adaptive response by the liver to a period of fluctuating nutrient availability. The livers ability to regulate its metabolic activity may have profound effects on the efficiency of whole body energy utilization during CG. SIGNIFICANCE: This study is the first to unravel the effect of compensatory growth on the hepatic proteome of cattle using transcriptome-assisted shot gun proteomics. Proteins identified as being affected by dietary restriction and subsequent expression of compensatory growth in this study may, following appropriate validation, contribute to the identification of functional genetic variants. Such information could be harnessed within the context of genomic selection in cattle breeding programs to identify animals with a greater genetic potential to undergo compensatory growth, thus increasing the profitability of the beef sector and accelerating genetic gain.
Collapse
Affiliation(s)
- Yvonne Mullins
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Gordon Blackshields
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| |
Collapse
|
21
|
Radadiya A, Zhu W, Coricello A, Alcaro S, Richards NGJ. Improving the Treatment of Acute Lymphoblastic Leukemia. Biochemistry 2020; 59:3193-3200. [PMID: 32786406 PMCID: PMC7497903 DOI: 10.1021/acs.biochem.0c00354] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
l-Asparaginase (EC 3.5.1.1) was first used as a component of combination drug therapies to treat acute lymphoblastic leukemia (ALL), a cancer of the blood and bone marrow, almost 50 years ago. Administering this enzyme to reduce asparagine levels in the blood is a cornerstone of modern clinical protocols for ALL; indeed, this remains the only successful example of a therapy targeted against a specific metabolic weakness in any form of cancer. Three problems, however, constrain the clinical use of l-asparaginase. First, a type II bacterial variant of l-asparaginase is administered to patients, the majority of whom are children, which produces an immune response thereby limiting the time over which the enzyme can be tolerated. Second, l-asparaginase is subject to proteolytic degradation in the blood. Third, toxic side effects are observed, which may be correlated with the l-glutaminase activity of the enzyme. This Perspective will outline how asparagine depletion negatively impacts the growth of leukemic blasts, discuss the structure and mechanism of l-asparaginase, and briefly describe the clinical use of chemically modified forms of clinically useful l-asparaginases, such as Asparlas, which was recently given FDA approval for use in children (babies to young adults) as part of multidrug treatments for ALL. Finally, we review ongoing efforts to engineer l-asparaginase variants with improved therapeutic properties and briefly detail emerging, alternate strategies for the treatment of forms of ALL that are resistant to asparagine depletion.
Collapse
Affiliation(s)
- Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Wen Zhu
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Adriana Coricello
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy.,Net4Science, Università "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, 13079 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
22
|
Qin C, Yang X, Zhan Z. High Expression of Asparagine Synthetase Is Associated with Poor Prognosis of Breast Cancer in Chinese Population. Cancer Biother Radiopharm 2020; 35:581-585. [PMID: 32412789 DOI: 10.1089/cbr.2019.3295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aims: This study aimed to determine the expression of asparagine synthetase (ASNS) in breast cancer (BC) tissues and estimate its prognostic value for BC patients. Besides, the roles of ASNS in the proliferation of BC cells were also examined in the study. Methods: Quantitative real-time PCR was conducted to detect the expression of ASNS mRNA in BC tissues and normal controls. The relationship between ASNS expression and clinical characteristics of BC patients was analyzed using χ-square test. MTT assay was performed to explore the effect of ASNS expression on the proliferation of BC cells. Kaplan-Meier curves were plotted to describe the overall survival rate of BC patients. Cox regression analyses were implemented to investigate prognostic factors. Results: ASNS mRNA overexpression was observed in BC tissues (p < 0.05). High expression of ASNS was significantly related to histological grade (p = 0.017), vascular invasion (p = 0.009), and PR status (p = 0.014). The downregulation of ASNS affected the proliferation of BC cells (p < 0.05). Kaplan-Meier survival showed that patients with high ASNS expression lived shorter than those with low expressions (p < 0.001). Finally, Cox regression analyses revealed that ASNS could act as a prognostic marker for BC patients (p < 0.001, HR = 3.293, 95% CI = 1.790-6.058). Conclusion: Taken together, ASNS is a valuable prognostic biomarker for BC patients.
Collapse
Affiliation(s)
- Chunxin Qin
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai City, China
| | - Xiaoqing Yang
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai City, China
| | - Zhiyong Zhan
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai City, China
| |
Collapse
|
23
|
FOXM1 Deubiquitination by USP21 Regulates Cell Cycle Progression and Paclitaxel Sensitivity in Basal-like Breast Cancer. Cell Rep 2020; 26:3076-3086.e6. [PMID: 30865895 PMCID: PMC6425951 DOI: 10.1016/j.celrep.2019.02.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/23/2022] Open
Abstract
The transcription factor FOXM1 contributes to cell cycle progression and is significantly upregulated in basal-like breast cancer (BLBC). Despite its importance in normal and cancer cell cycles, we lack a complete understanding of mechanisms that regulate FOXM1. We identified USP21 in an RNAi-based screen for deubiquitinases that control FOXM1 abundance. USP21 increases the stability of FOXM1, and USP21 binds and deubiquitinates FOXM1 in vivo and in vitro, indicating a direct enzyme-substrate relationship. Depleting USP21 downregulates the FOXM1 transcriptional network and causes a signifi-cant delay in cell cycle progression. Significantly, USP21 depletion sensitized BLBC cell lines and mouse xenograft tumors to paclitaxel, an anti-mitotic, frontline therapy in BLBC treatment. USP21 is the most frequently amplified deubiquitinase in BLBC patient tumors, and its amplification co-occurs with the upregulation of FOXM1 protein. Altogether, these data suggest a role for USP21 in the proliferation and potentially treatment of FOXM1-high, USP21-high BLBC. The cell cycle transcription factor FOXM1 is activated in basal-like breast cancer (BLBC) and associated with therapeutic resistance and poor patient outcomes. Arceci et al. show USP21 antagonizes FOXM1 degradation, thereby promoting proliferation and paclitaxel resistance. USP21 is catalytically active and recurrently overexpressed in BLBC, representing a potential therapeutic target.
Collapse
|
24
|
Chiu M, Taurino G, Bianchi MG, Kilberg MS, Bussolati O. Asparagine Synthetase in Cancer: Beyond Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1480. [PMID: 31998641 PMCID: PMC6962308 DOI: 10.3389/fonc.2019.01480] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Asparagine Synthetase (ASNS) catalyzes the synthesis of the non-essential amino acid asparagine (Asn) from aspartate (Asp) and glutamine (Gln). ASNS expression is highly regulated at the transcriptional level, being induced by both the Amino Acid Response (AAR) and the Unfolded Protein Response (UPR) pathways. Lack of ASNS protein expression is a hallmark of Acute Lymphoblastic Leukemia (ALL) blasts, which, therefore, are auxotrophic for Asn. This peculiarity is the rationale for the use of bacterial L-Asparaginase (ASNase) for ALL therapy, the first example of anti-cancer treatment targeting a tumor-specific metabolic feature. Other hematological and solid cancers express low levels of ASNS and, therefore, should also be Asn auxotrophs and ASNase sensitive. Conversely, in the last few years, several reports indicate that in some cancer types ASNS is overexpressed, promoting cell proliferation, chemoresistance, and a metastatic behavior. However, enhanced ASNS activity may constitute a metabolic vulnerability in selected cancer models, suggesting a variable and tumor-specific role of the enzyme in cancer. Recent evidence indicates that, beyond its canonical role in protein synthesis, Asn may have additional regulatory functions. These observations prompt a re-appreciation of ASNS activity in the biology of normal and cancer tissues, with particular attention to the fueling of Asn exchange between cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Zhu W, Radadiya A, Bisson C, Wenzel S, Nordin BE, Martínez-Márquez F, Imasaki T, Sedelnikova SE, Coricello A, Baumann P, Berry AH, Nomanbhoy TK, Kozarich JW, Jin Y, Rice DW, Takagi Y, Richards NGJ. High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity. Commun Biol 2019; 2:345. [PMID: 31552298 PMCID: PMC6748925 DOI: 10.1038/s42003-019-0587-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Expression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis. Wen Zhu et al. report the crystal structure of human asparagine synthetase at a 1.85 Å resolution, enabling computational analysis of inhibitor binding. They also find new insights into the intermolecular interactions contributing to binding specificity of inhibitors.
Collapse
Affiliation(s)
- Wen Zhu
- 1School of Chemistry, Cardiff University, Cardiff, UK.,8Present Address: Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
| | | | - Claudine Bisson
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,8Present Address: Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
| | - Sabine Wenzel
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Brian E Nordin
- 4ActivX Biosciences, Inc, La Jolla, CA USA.,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Francisco Martínez-Márquez
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tsuyoshi Imasaki
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA.,5Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Svetlana E Sedelnikova
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | | | - Alexandria H Berry
- 6Department of Biology, California Institute of Technology, Pasadena, CA USA
| | | | | | - Yi Jin
- 1School of Chemistry, Cardiff University, Cardiff, UK
| | - David W Rice
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Yuichiro Takagi
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nigel G J Richards
- 1School of Chemistry, Cardiff University, Cardiff, UK.,7Foundation for Applied Molecular Evolution, Alachua, FL USA
| |
Collapse
|
26
|
Noree C, Monfort E, Shotelersuk V. Human asparagine synthetase associates with the mitotic spindle. Biol Open 2018; 7:bio.038307. [PMID: 30464009 PMCID: PMC6310878 DOI: 10.1242/bio.038307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cells are characterized by extensive reprogramming of metabolic pathways in order to promote cell division and survival. However, the growth promotion effects of metabolic reprogramming can be due to moonlighting functions of metabolic enzymes as well as the redirection of flux through particular pathways. To identify metabolic enzymes that might have potential moonlighting functions in oncogenesis, we have examined recent screens of the yeast GFP strain collection for metabolic enzymes that have been implicated in cancer metabolism with an unusual subcellular localization. Asparagine synthetase forms filaments in yeast in response to nutrient limitation and is part of a pathway that is a chemotherapy target in acute lymphoblastic leukemia. Interestingly, while yeast asparagine synthetase forms cytoplasmic filaments in response to nutrient stress, human asparagine synthetase is associated with the centrosomes and mitotic spindles. This localization is disrupted by both nocodazole and asparaginase treatments. This failure to localize occurs even though asparagine synthetase is highly upregulated in response to asparaginase treatment. Together, these results argue that human asparagine synthetase undergoes regulated recruitment to the mitotic spindles and that it may have acquired a second role in mitosis similar to other metabolic enzymes that contribute to metabolic reprogramming in cancer cells. Summary: While yeast Asn1p/ASN2p forms cytoplasmic filaments in response to nutrient limitation, hASNS is associated with centrosomes and mitotic spindles in actively dividing cells, suggesting its additional role in cell division.
Collapse
Affiliation(s)
- Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Elena Monfort
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive (MC 0347), La Jolla, CA 92093-0347, USA
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
27
|
Integrated SWATH-based and targeted-based proteomics provide insights into the retinal emmetropization process in guinea pig. J Proteomics 2018; 181:1-15. [PMID: 29572162 DOI: 10.1016/j.jprot.2018.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 01/13/2023]
Abstract
Myopia is generally regarded as a failure of normal emmetropization process, however, its underlying molecular mechanisms are unclear. To investigate the retinal protein profile changes during emmetropization, we studied differential protein expressions of ocular growth in young guinea pigs at 3 and 21 days old respectively, when significant axial elongation was detected (P < 0.001, n = 10). Independent pooled retinal samples of both eyes were subjected to SWATH mass spectrometry (MS) followed by bioinformatics analysis using cloud-based platforms. A comprehensive retina SWATH ion-library consisting of 3138 (22,871) unique proteins (peptides) at 1% FDR was constructed. 40 proteins were found to be significantly up-regulated and 8 proteins down-regulated during emmetropization (≥log2 of 0.43 with ≥2 peptides matched per protein; P < 0.05). Using pathway analysis, the most significant pathway identifiable was 'phototransduction' (P = 1.412e-4). Expression patterns of 7 proteins identified in this pathway were further validated and confirmed (P < 0.05) with high-resolution Multiple Reaction Monitoring (MRM-HR) MS. Combining discovery and targeted proteomics approaches, this study for the first time comprehensively profiled protein changes in the guinea pig retina during normal emmetropization-associated eye growth. The findings of this study are also relevant to the myopia development, which is the result of failed emmetropization. SIGNIFICANCE Myopia is considered as a failure of emmetropization. However, the underlying biochemical mechanism of emmetropization, a visually guided process in which eye grows towards the optimal optical state of clear vision during early development, is not well understood. Retina is known as the key tissue to regulate this active eye growth. we studied eye growth of young guinea pigs and harvested their retinal tissues. A comprehensive SWATH ion library with identification of a total 3138 unique proteins were established, in which 48 proteins exhibited significant differential expressions between 3 and 21 days old. After MRM-HR confirmation, 'phototransduction' were found as the most active pathway during emmetropic eye growth. This study is the first in discovering key retinal protein players and pathways which are presumably orchestrated by biological mechanism(s) underlying emmetropization.
Collapse
|
28
|
Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine jejunal epithelium. PLoS One 2018; 13:e0194445. [PMID: 29554113 PMCID: PMC5858768 DOI: 10.1371/journal.pone.0194445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/02/2018] [Indexed: 11/19/2022] Open
Abstract
Compensatory growth (CG), an accelerated growth phenomenon which occurs following a period of dietary restriction is utilised worldwide in animal production systems as a management practise to lower feed costs. The objective of this study was to evaluate the contribution of jejunal epithelial to CG in cattle through transcriptional profiling following a period of dietary restriction as well as subsequent re-alimentation induced CG. Sixty Holstein Friesian bulls were separated into two groups; RES and ADLIB, with 30 animals in each. RES animals were offered a restricted diet for 125 days (Period 1) followed by ad libitum feeding for 55 days (Period 2). ADLIB animals had ad libitum access to feed across both periods 1 and 2. At the end of each period, 15 animals from each treatment group were slaughtered, jejunal epithelium collected and RNAseq analysis performed. Animals that were previously diet restricted underwent CG, gaining 1.8 times the rate of their non-restricted counterparts. Twenty-four genes were differentially expressed in RES compared to ADLIB animals at the end of Period 1, with only one gene, GSTA1, differentially expressed between the two groups at the end of Period 2. When analysed within treatment (RES, Period 2 v Period 1), 31 genes were differentially expressed between diet restricted and animals undergoing CG. Dietary restriction and subsequent re-alimentation were associated with altered expression of genes involved in digestion and metabolism as well as those involved in cellular division and growth. Compensatory growth was also associated with greater expression of genes involved in cellular protection and detoxification in jejunal epithelium. This study highlights some of the molecular mechanisms regulating the response to dietary restriction and subsequent re-alimentation induced CG in cattle; however the gene expression results suggest that most of the CG in jejunal epithelium had occurred by day 55 of re-alimentation.
Collapse
|
29
|
da Silva Lacerda GR, de Melo CML, de Araújo Soares AK, Moreira LR, Coriolano MC, de Souza Lima GM, Napoleão TH, de Lorena VMB, de Oliveira da Silva LA, do Nascimento SC. L-asparaginase isolated from Streptomyces ansochromogenes promotes Th1 profile and activates CD8 + T cells in human PBMC: an in vitro investigation. J Appl Microbiol 2017; 124:1122-1130. [PMID: 29159986 DOI: 10.1111/jam.13644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
AIMS A new L-asparaginase produced by Streptomyces ansochromogenes UFPEDA 3420 actinobacteria was used in this study against human lymphocyte cultures to evaluate the immunological profile induced by this enzyme. METHODS AND RESULTS Cultures of lymphocytes were stimulated with S. ansochromogenes L-asparaginase, and cytotoxicity, cell viability, cell stimulation and cytokine production were analysed. This new S. ansochromogenes L-asparaginase induced activation and proliferation of the TCD8+ lymphocyte subset and produced higher TNF-α, IFN-γ, IL-2 and IL-10 levels in a 24-h assay. CONCLUSION Streptomyces ansochromogenes L-asparaginase is a promising molecule to be used in in vivo models and to deepen preclinical tests against acute lymphoblast leukaemia. SIGNIFICANCE AND IMPACT OF STUDY L-asparaginase is an indispensable component of the chemotherapeutic treatment of acute lymphoblast leukaemia (ALL) and acute myeloid leukaemia (AML). Currently, drugs such as Asparaginase® , Kidrolase® , and Elspar® and Erwinase® are efficient against leukemic disease, but promote immunosuppression and other side effects in human organisms. Our purified S. ansochromogenes L-asparaginase showed promissory results inducing, in vitro, higher immunostimulation in human PBMC, especially in T CD8+ lymphocyte subsets.
Collapse
Affiliation(s)
| | - C M L de Melo
- Laboratory of Immunological and Antitumor Analyzes, Department of Antibiotics, Federal University of Pernambuco, Pernambuco, Brazil
| | - A K de Araújo Soares
- Laboratory of Immunoparasitology - Aggeu Magalhães Research Center (CPqAM), Oswaldo Cruz Foundation (FIOCRUZ), Pernambuco, Brazil
| | - L R Moreira
- Laboratory of Immunoparasitology - Aggeu Magalhães Research Center (CPqAM), Oswaldo Cruz Foundation (FIOCRUZ), Pernambuco, Brazil
| | - M C Coriolano
- Laboratory of Glycoproteins - Department of Biochemistry, Federal University of Pernambuco, Pernambuco, Brazil
| | - G M de Souza Lima
- Department of Antibiotics, Federal University of Pernambuco, Pernambuco, Brazil
| | - T H Napoleão
- Laboratory of Glycoproteins - Department of Biochemistry, Federal University of Pernambuco, Pernambuco, Brazil
| | - V M B de Lorena
- Laboratory of Immunoparasitology - Aggeu Magalhães Research Center (CPqAM), Oswaldo Cruz Foundation (FIOCRUZ), Pernambuco, Brazil
| | | | - S C do Nascimento
- Department of Antibiotics, Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
30
|
Abstract
Background Recently, it is reported that asparagine synthetase (ASNS) is an independent predictor of surgical survival in hepatocellular carcinoma (HCC) patients. It is also reported that activating transcription factor 6 (ATF6) expression is decreased in HCC patients. So in the present study, we explored the relationship between ASNS and ATF6, and whether ASNS expression was associated with HCC. Methods ATF6 was over expressed in 3 HCC cell lines (HepG2, HepG2.2.15 and SMMC-7721). We then examined the mRNA levels of ASNS and ATF6 in 90 HCC patients, 77 chronic hepatitis B patients and 70 controls. We also genotyped 2 functional polymorphisms in ASNS in a case–control study. Results The expression of ASNS was significantly elevated when ATF6 was over expressed. The expressions of these 2 genes were both decreased in HCC patients, and it was more significantly with ASNS. The mRNA levels of ASNS and ATF6 were positively correlated with each other. rs34050735 was associated with HCC in the case–control study (P = 0.003) and also an independent predictor of overall survival of HCC patients (P = 0.001). Conclusions Taken together, these findings indicated that rs34050735 in ASNS may associate with HCC and may be a promising biomarker of HCC.
Collapse
|
31
|
Yu Q, Wang X, Wang L, Zheng J, Wang J, Wang B. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells. Scand J Gastroenterol 2016; 51:1220-6. [PMID: 27251594 DOI: 10.1080/00365521.2016.1190399] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. METHODS In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. RESULTS Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. CONCLUSION ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.
Collapse
Affiliation(s)
- Qingxiang Yu
- a Department of Gastroenterology and Hepatology , General Hospital, Tianjin Medical University , Tianjin , PR China
| | - Xiaoyu Wang
- a Department of Gastroenterology and Hepatology , General Hospital, Tianjin Medical University , Tianjin , PR China
| | - Li Wang
- a Department of Gastroenterology and Hepatology , General Hospital, Tianjin Medical University , Tianjin , PR China
| | - Jia Zheng
- a Department of Gastroenterology and Hepatology , General Hospital, Tianjin Medical University , Tianjin , PR China
| | - Jiang Wang
- a Department of Gastroenterology and Hepatology , General Hospital, Tianjin Medical University , Tianjin , PR China
| | - Bangmao Wang
- a Department of Gastroenterology and Hepatology , General Hospital, Tianjin Medical University , Tianjin , PR China
| |
Collapse
|
32
|
Li H, Zhou F, Du W, Dou J, Xu Y, Gao W, Chen G, Zuo X, Sun L, Zhang X, Yang S. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells. Biotechnol Appl Biochem 2015; 63:328-33. [PMID: 25858017 DOI: 10.1002/bab.1383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/03/2015] [Indexed: 11/11/2022]
Abstract
Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Hui Li
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fusheng Zhou
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wenhui Du
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jinfa Dou
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yu Xu
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wanwan Gao
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Gang Chen
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xianbo Zuo
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Liangdan Sun
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xuejun Zhang
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Sen Yang
- Department of Dermatology, Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
33
|
Zheng B, Chai R, Yu X. Downregulation of NIT2 inhibits colon cancer cell proliferation and induces cell cycle arrest through the caspase-3 and PARP pathways. Int J Mol Med 2015; 35:1317-22. [PMID: 25738796 DOI: 10.3892/ijmm.2015.2125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 12/30/2014] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer, also known as colon cancer is the most devastating malignancy worldwide. Previous studies have reported that Nit2, a member of the nitrilase superfamily, is a potential tumor suppressor, although its function remains elusive in colon cancer. In the present study, we employed an RNA interference lentivirus system to silence endogenous NIT2 expression in the colon cancer cell line, HCT116. The knockdown efficiency was determined by RT-qPCR and western blot analysis. The depletion of NIT2 markedly inhibited colon cancer cell proliferation and colony formation and induced cell cycle arrest in the G0/G1 phase, as shown by MTT assay, colony formation assay and flow cytometric analysis, respectively. Further investigation with an intracellular signaling array demonstrated that the depletion of NIT2 triggered the apoptosis of colon cancer cells through the caspase-3 and poly(ADP-ribose) polymerase (PARP) pathways. Our findings suggest that NIT2 may be an oncogene in human colon cancer and may thus serve as a promising therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Bo'an Zheng
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Rui Chai
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaojun Yu
- Department of Gastroenterological Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|