1
|
Im D, Kishikawa JI, Shiimura Y, Hisano H, Ito A, Fujita-Fujiharu Y, Sugita Y, Noda T, Kato T, Asada H, Iwata S. Structural insights into the agonists binding and receptor selectivity of human histamine H 4 receptor. Nat Commun 2023; 14:6538. [PMID: 37863901 PMCID: PMC10589313 DOI: 10.1038/s41467-023-42260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Histamine is a biogenic amine that participates in allergic and inflammatory processes by stimulating histamine receptors. The histamine H4 receptor (H4R) is a potential therapeutic target for chronic inflammatory diseases such as asthma and atopic dermatitis. Here, we show the cryo-electron microscopy structures of the H4R-Gq complex bound with an endogenous agonist histamine or the selective agonist imetit bound in the orthosteric binding pocket. The structures demonstrate binding mode of histamine agonists and that the subtype-selective agonist binding causes conformational changes in Phe3447.39, which, in turn, form the "aromatic slot". The results provide insights into the molecular underpinnings of the agonism of H4R and subtype selectivity of histamine receptors, and show that the H4R structures may be valuable in rational drug design of drugs targeting the H4R.
Collapse
Affiliation(s)
- Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Shiimura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute of Life Science, Kurume University, Kurume, Fukuoka, 830-0011, Japan
| | - Hiromi Hisano
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akane Ito
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
2
|
Mogavero MP, DelRosso LM, Bruni O, Salemi M, Salsone M, Novellino F, Zucconi M, Ferini Strambi L, Ferri R. Genetics and epigenetics of rare hypersomnia. Trends Genet 2023; 39:415-429. [PMID: 36842900 DOI: 10.1016/j.tig.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/28/2023]
Abstract
Herein we focus on connections between genetics and some central disorders of hypersomnolence - narcolepsy types 1 and 2 (NT1, NT2), idiopathic hypersomnia (IH), and Kleine-Levin syndrome (KLS) - for a better understanding of their etiopathogenetic mechanisms and a better diagnostic and therapeutic definition. Gene pleiotropism influences neurological and sleep disorders such as hypersomnia; therefore, genetics allows us to uncover common pathways to different pathologies, with potential new therapeutic perspectives. An important body of evidence has accumulated on NT1 and IH, allowing a better understanding of etiopathogenesis, disease biomarkers, and possible new therapeutic approaches. Further studies are needed in the field of epigenetics, which has a potential role in the modulation of biological specific hypersomnia pathways.
Collapse
Affiliation(s)
- Maria Paola Mogavero
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Oliviero Bruni
- Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Maria Salsone
- Vita-Salute San Raffaele University, Milan, Italy; Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Marco Zucconi
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Ferini Strambi
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
3
|
Seldeslachts A, Peigneur S, Mebs D, Tytgat J. Unraveling the venom chemistry with evidence for histamine as key regulator in the envenomation by caterpillar Automeris zaruma. Front Immunol 2022; 13:972442. [PMID: 36091066 PMCID: PMC9448982 DOI: 10.3389/fimmu.2022.972442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, envenomation by caterpillars of Automeris spp. became an increasing health problem in Latin America. Accidental contact with the stinging spines of these caterpillars cause acute local pain, itching, inflammation and skin rashes that persists for days. Even when the cause is obvious, the exact molecular mechanisms responsible for the observed symptoms are yet to be elucidated. Here, we describe for the first time, an active compound in the venom and the study of the bioactivity of the venom extracted from the spines of the caterpillar Automeris zaruma. Electrophysiological screening of a library of membrane proteins important for pain and itch enabled us to investigate and reveal the mode of action of the venom of A. zaruma. Further mass spectrometric analysis (Q-TOF-MS) made it possible to establish a link between the bioactivity and the components found in the venom. We show that the spine extract of A. zaruma contains histamine that potently activates the four types of the human histamine receptors (H1R, H2R, H3R and H4R) with a selectivity preference towards H3R and H4R. Furthermore, a modulation of the target MRGPRX2 was found. Together, these findings are the first to explain the symptomology of A. zaruma envenomation, enabling us a better understanding of caterpillar envenomation and predict that the hurdle of the scarce efficacy of the currently used antihistaminic drugs can be overcome by including H3R and H4R blockers in the clinical used medication. Such an approach might be used for other caterpillar envenomation in the world and represent a significant improvement for the well-being of the patient.
Collapse
Affiliation(s)
| | | | - Dietrich Mebs
- Institute of Legal Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
- *Correspondence: Jan Tytgat,
| |
Collapse
|
4
|
Zheng Y, Wágner G, Hauwert N, Ma X, Vischer HF, Leurs R. New Chemical Biology Tools for the Histamine Receptor Family. Curr Top Behav Neurosci 2022; 59:3-28. [PMID: 35851442 DOI: 10.1007/7854_2022_360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Gábor Wágner
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Niels Hauwert
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Xiaoyuan Ma
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Sharma A, Muresanu DF, Patnaik R, Menon PK, Tian ZR, Sahib S, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Skaper SD, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma HS. Histamine H3 and H4 receptors modulate Parkinson's disease induced brain pathology. Neuroprotective effects of nanowired BF-2649 and clobenpropit with anti-histamine-antibody therapy. PROGRESS IN BRAIN RESEARCH 2021; 266:1-73. [PMID: 34689857 DOI: 10.1016/bs.pbr.2021.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Military personnel deployed in combat operations are highly prone to develop Parkinson's disease (PD) in later lives. PD largely involves dopaminergic pathways with hallmarks of increased alpha synuclein (ASNC), and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) precipitating brain pathology. However, increased histaminergic nerve fibers in substantia nigra pars Compacta (SNpc), striatum (STr) and caudate putamen (CP) associated with upregulation of Histamine H3 receptors and downregulation of H4 receptors in human cases of PD is observed in postmortem cases. These findings indicate that modulation of histamine H3 and H4 receptors and/or histaminergic transmission may induce neuroprotection in PD induced brain pathology. In this review effects of a potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist, in association with monoclonal anti-histamine antibodies (AHmAb) in PD brain pathology is discussed based on our own observations. Our investigation shows that chronic administration of conventional or TiO2 nanowired BF 2649 (1mg/kg, i.p.) or CLBPT (1mg/kg, i.p.) once daily for 1 week together with nanowired delivery of HAmAb (25μL) significantly thwarted ASNC and p-tau levels in the SNpC and STr and reduced PD induced brain pathology. These observations are the first to show the involvement of histamine receptors in PD and opens new avenues for the development of novel drug strategies in clinical strategies for PD, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Stephen D Skaper
- Anesthesiology & Intensive Care, Department of Pharmacology, University of Padua, Padova, Italy
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Lopes FB, Aranha CMSQ, Fernandes JPS. Histamine H 3 receptor and cholinesterases as synergistic targets for cognitive decline: Strategies to the rational design of multitarget ligands. Chem Biol Drug Des 2021; 98:212-225. [PMID: 33991182 DOI: 10.1111/cbdd.13866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/28/2022]
Abstract
The role of histamine and acetylcholine in cognitive functions suggests that compounds able to increase both histaminergic and cholinergic neurotransmissions in the brain should be considered as promising therapeutic options. For this purpose, dual inhibitors of histamine H3 receptors (H3 R) and cholinesterases (ChEs) have been designed and assessed. In this context, this paper reviews the strategies used to obtain dual H3 R/ChEs ligands using multitarget design approaches. Hybrid compounds designed by linking tacrine or flavonoid motifs to H3 R antagonists were obtained with high affinity for both targets, and compounds designed by merging the H3 R antagonist pharmacophore with known anticholinesterase molecules were also reported. These reports strongly suggest that key modifications in the lipophilic region (including a second basic group) seem to be a strategy to reach novel compounds, allied with longer linker groups to a basic region. Some compounds have already demonstrated efficacy in memory models, although the pharmacokinetic and toxicity profile should be considered when designing further compounds. In conclusion, the key features to be considered when designing novel H3 R/ChEs inhibitors with improved pharmacological profile were herein summarized.
Collapse
Affiliation(s)
- Flávia B Lopes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cecília M S Q Aranha
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Mehta P, Miszta P, Filipek S. Molecular Modeling of Histamine Receptors-Recent Advances in Drug Discovery. Molecules 2021; 26:1778. [PMID: 33810008 PMCID: PMC8004658 DOI: 10.3390/molecules26061778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer's disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014-2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.
Collapse
Affiliation(s)
| | | | - Sławomir Filipek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
8
|
Novel potent (dihydro)benzofuranyl piperazines as human histamine receptor ligands - Functional characterization and modeling studies on H 3 and H 4 receptors. Bioorg Med Chem 2020; 30:115924. [PMID: 33333448 DOI: 10.1016/j.bmc.2020.115924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
Histamine acts through four different receptors (H1R-H4R), the H3R and H4R being the most explored in the last years as drug targets. The H3R is a potential target to treat narcolepsy, Parkinson's disease, epilepsy, schizophrenia and several other CNS-related conditions, while H4R blockade leads to anti-inflammatory and immunomodulatory effects. Our group has been exploring the dihydrobenzofuranyl-piperazines (LINS01 series) as human H3R/H4R ligands as potential drug candidates. In the present study, a set of 12 compounds were synthesized from adequate (dihydro)benzofuran synthons through simple reactions with corresponding piperazines, giving moderate to high yields. Four compounds (1b, 1f, 1g and 1h) showed high hH3R affinity (pKi > 7), compound 1h being the most potent (pKi 8.4), and compound 1f showed the best efficiency (pKi 8.2, LE 0.53, LLE 5.85). BRET-based assays monitoring Gαi activity indicated that the compounds are potent antagonists. Only one compound (2c, pKi 7.1) presented high affinity for hH4R. In contrast to what was observed for hH3R, it showed partial agonist activity. Docking experiments indicated that bulky substituents occupy a hydrophobic pocket in hH3R, while the N-allyl group forms favorable interactions with hydrophobic residues in the TM2, 3 and 7, increasing the selectivity towards hH3R. Additionally, the importance of the indole NH in the interaction with Glu5.46 from hH4R was confirmed by the modeling results, explaining the affinity and agonistic activity of compound 2c. The data reported in this work represent important findings for the rational design of future compounds for hH3R and hH4R.
Collapse
|
9
|
Mehta P, Miszta P, Rzodkiewicz P, Michalak O, Krzeczyński P, Filipek S. Enigmatic Histamine Receptor H 4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life (Basel) 2020; 10:E50. [PMID: 32344736 PMCID: PMC7235846 DOI: 10.3390/life10040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The histamine H4 receptor, belonging to the family of G-protein coupled receptors, is an increasingly attractive drug target. It plays an indispensable role in many cellular pathways, and numerous H4R ligands are being studied for the treatment of several inflammatory, allergic, and autoimmune disorders, including pulmonary fibrosis. Activation of H4R is involved in cytokine production and mediates mast cell activation and eosinophil chemotaxis. The importance of this receptor has also been shown in inflammatory models: peritonitis, respiratory tract inflammation, colitis, osteoarthritis, and rheumatoid arthritis. Recent studies suggest that H4R acts as a modulator in cancer, neuropathic pain, vestibular disorders, and type-2 diabetes, however, its role is still not fully understood.
Collapse
Affiliation(s)
- Pakhuri Mehta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Rzodkiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Olga Michalak
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Piotr Krzeczyński
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
10
|
Soliani A, Kubota SM, Corrêa MF, Cerutti SM, Fernandes JPS. Differential contribution of H3R antagonism by LINS01 compounds on memory, anxiety-like behaviour and spontaneous locomotor activity in healthy rats. Behav Brain Res 2020; 377:112230. [DOI: 10.1016/j.bbr.2019.112230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
|
11
|
Corrêa MF, Reiner D, Fernandes GAB, Varela MT, Aranha CMSQ, Stark H, Fernandes JPS. Profiling of LINS01 compounds at human dopamine D2 and D3 receptors. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Correa MF, Dos Santos Fernandes JP. QSAR Modeling of Histamine H3R Antagonists/inverse Agonists as Future Drugs for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:749-757. [PMID: 28820054 PMCID: PMC6080103 DOI: 10.2174/1570159x15666170818100644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 11/22/2022] Open
Abstract
Background Histamine H3 receptor (H3R) is associated with several neuropsychological diseases, and thus it is an important target involved in several CNS disorders, such as narcolepsy, attention deficit hyperactivity disorder and schizophrenia. Since QSAR modeling is a feasible approach to explain the role of the molecular substituents in the biological activity, it can help in improving the design of better H3R ligands for these conditions. Methods This article reviews papers previously published in literature to show the current status of the contribution from QSAR modeling to reach H3R antagonists/inverse agonists. Results Classical and 3D-QSAR models were retrieved, showing that the steric and hydrophobic properties of the H3R ligands are most important to reach good affinity. Conclusion Although QSAR methods are valuable to design better H3R antagonists/inverse agonists, pharmacokinetics should also be considered in future models to ensure good CNS penetration.
Collapse
Affiliation(s)
- Michelle Fidelis Correa
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Rua Sao Nicolau 210, Centro 09913- 030, Diadema-SP, Brazil
| | - Joao Paulo Dos Santos Fernandes
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Rua Sao Nicolau 210, Centro 09913- 030, Diadema-SP, Brazil
| |
Collapse
|
13
|
Corrêa MF, Barbosa ÁJR, Fernandes GAB, Baker JG, Fernandes JPDS. Pharmacological and SAR analysis of the LINS01 compounds at the human histamine H1
, H2
, and H3
receptors. Chem Biol Drug Des 2018; 93:89-95. [DOI: 10.1111/cbdd.13387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/28/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Jillian G. Baker
- Cell Signalling Research Group; School of Life Sciences; University of Nottingham; Nottingham UK
| | | |
Collapse
|
14
|
Corrêa MF, Barbosa ÁJR, Teixeira LB, Duarte DA, Simões SC, Parreiras-E-Silva LT, Balbino AM, Landgraf RG, Bouvier M, Costa-Neto CM, Fernandes JPS. Pharmacological Characterization of 5-Substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel Antagonists for the Histamine H 3 and H 4 Receptors with Anti-inflammatory Potential. Front Pharmacol 2017; 8:825. [PMID: 29184503 PMCID: PMC5694482 DOI: 10.3389/fphar.2017.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The histamine receptors (HRs) are traditional G protein-coupled receptors of extensive therapeutic interest. Recently, H3R and H4R subtypes have been targeted in drug discovery projects for inflammation, asthma, pain, cancer, Parkinson’s, and Alzheimer’s diseases, which includes searches for dual acting H3R/H4R ligands. In the present work, nine 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01 series) molecules were synthesized and evaluated as H3R and H4R ligands. Our data show that the N-allyl-substituted compound LINS01004 bears the highest affinity for H3R (pKi 6.40), while the chlorinated compound LINS01007 has moderate affinity for H4R (pKi 6.06). In addition, BRET assays to assess the functional activity of Gi1 coupling indicate that all compounds have no intrinsic activity and act as antagonists of these receptors. Drug-likeness assessment indicated these molecules are promising leads for further improvements. In vivo evaluation of compounds LINS01005 and LINS01007 in a mouse model of asthma showed a better anti-inflammatory activity of LINS01007 (3 g/kg) than the previously tested compound LINS01005. This is the first report with functional data of these compounds in HRs, and our results also show the potential of their applications as anti-inflammatory.
Collapse
Affiliation(s)
- Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Álefe J R Barbosa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Larissa B Teixeira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego A Duarte
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Sarah C Simões
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas T Parreiras-E-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aleksandro M Balbino
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Richardt G Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, QC, Canada
| | - Claudio M Costa-Neto
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
15
|
Corrêa MF, Varela MT, Balbino AM, Torrecilhas AC, Landgraf RG, Troncone LRP, Fernandes JPDS. 1-[(2,3-Dihydro-1-benzofuran-2-yl) methyl]piperazines as novel anti-inflammatory compounds: Synthesis and evaluation on H 3 R/H 4 R. Chem Biol Drug Des 2017; 90:317-322. [PMID: 28109127 DOI: 10.1111/cbdd.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 11/26/2022]
Abstract
The histamine receptors (HRs) are members of G-protein-coupled receptor superfamily and traditional targets of huge therapeutic interests. Recently, H3 R and H4 R have been explored as targets for drug discovery, including in the search for dual-acting H3 R/H4 R ligands. The H4 R, the most recent histamine receptor, is a promising target for novel anti-inflammatory agents in several conditions such as asthma and other chronic inflammatory diseases. Due to similarity with previously reported ligands of HRs, a set of 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines were synthesized and evaluated in competitive binding assays as H3 R/H4 R ligands herein. The results showed the compounds presented affinity (Ki ) for H3 R/H4 R in micromolar range, and they are more selective to H3 R. All the compounds showed no important cytotoxicity to mammalian cells. The phenyl-substituted compound LINS01005 has shown the higher affinity of the set for H4 R, but no considerable selectivity toward this receptor over H3 R. LINS01005 showed interesting anti-inflammatory activity in murine asthma model, reducing the eosinophil counts in bronchoalveolar lavage fluid, as well as the COX-2 expression. The presented compounds are valuable prototypes for further improvements to achieve better anti-inflammatory agents.
Collapse
Affiliation(s)
- Michelle Fidelis Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Marina Themoteo Varela
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Richardt Gama Landgraf
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | | |
Collapse
|
16
|
Mastitis Modifies the Biogenic Amines Profile in Human Milk, with Significant Changes in the Presence of Histamine, Putrescine and Spermine. PLoS One 2016; 11:e0162426. [PMID: 27584695 PMCID: PMC5008837 DOI: 10.1371/journal.pone.0162426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Biogenic amines (BAs) are low molecular weight nitrogenous organic compounds with different biological activities. Putrescine, spermidine and spermine are essential for the development of the gut and immune system of newborns, and are all found in human milk. Little is known, however, about the role of histamine, tyramine or cadaverine in breast milk. Nor is it known whether mastitis alters the BA composition of milk. The BA profile of human milk, and the influence of mastitis on BA concentrations, were therefore investigated. Putrescine, spermidine and spermine were the main BAs detected. In mastitis-affected milk, the concentrations of putrescine, spermine and histamine were higher.
Collapse
|
17
|
Kuang ZK, Feng SY, Hu B, Wang D, He SB, Kong DX. Predicting subtype selectivity of dopamine receptor ligands with three-dimensional biologically relevant spectrum. Chem Biol Drug Des 2016; 88:859-872. [PMID: 27390270 DOI: 10.1111/cbdd.12815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 12/11/2022]
Abstract
We applied a novel molecular descriptor, three-dimensional biologically relevant spectrum (BRS-3D), in subtype selectivity prediction of dopamine receptor (DR) ligands. BRS-3D is a shape similarity profile calculated by superimposing the objective compounds against 300 template ligands from sc-PDB. First, we constructed five subtype selectivity regression models between DR subtypes D1-D2, D1-D3, D2-D3, D2-D4, and D3-D4. The models' 10-fold cross-validation-squared correlation coefficient (Q2 , for training sets) and determination coefficient (R2 , for test sets) were in the range of 0.5-0.7 and 0.6-0.8, respectively. Then, four pair-wise (D1-D2, D2-D3, D2-D4, and D3-D4) and a multitype (D2, D3, and D4) classification models were developed with the prediction accuracies around or over 90% (for test sets). Lastly, we compared the performances of the models developed on BRS-3D and classical descriptors. The results showed that BRS-3D performed similarly to classical 2D descriptors and better than other 3D descriptors. Combining BRS-3D and 2D descriptors can further improve the prediction performance. These results confirmed the capacity of BRS-3D in the prediction of DR subtype-selective ligands.
Collapse
Affiliation(s)
- Zheng-Kun Kuang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan, China
| | - Shi-Yu Feng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan, China
| | - Ben Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan, China
| | - Song-Bing He
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan, China
| | - De-Xin Kong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China. .,Agricultural Bioinformatics Key Laboratory of Hubei Province, College of informatics, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
18
|
Khanfar MA, Affini A, Lutsenko K, Nikolic K, Butini S, Stark H. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists. Front Neurosci 2016; 10:201. [PMID: 27303254 PMCID: PMC4884744 DOI: 10.3389/fnins.2016.00201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 01/23/2023] Open
Abstract
With the very recent market approval of pitolisant (Wakix®), the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet DuesseldorfDuesseldorf, Germany; Faculty of Pharmacy, The University of JordanAmman, Jordan
| | - Anna Affini
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Kiril Lutsenko
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena Siena, Italy
| | - Holger Stark
- Stark Lab, Institut fuer Pharmazeutische and Medizinische Chemie, Heinrich-Heine-Universitaet Duesseldorf Duesseldorf, Germany
| |
Collapse
|
19
|
Tichenor MS, Thurmond RL, Venable JD, Savall BM. Functional Profiling of 2-Aminopyrimidine Histamine H4 Receptor Modulators. J Med Chem 2015; 58:7119-27. [PMID: 25993395 DOI: 10.1021/acs.jmedchem.5b00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histamine is an important endogenous signaling molecule that is involved in a number of physiological processes including allergic reactions, gastric acid secretion, neurotransmitter release, and inflammation. The biological effects of histamine are mediated by four histamine receptors with distinct functions and distribution profiles (H1-H4). The most recently discovered histamine receptor (H4) has emerged as a promising drug target for treating inflammatory diseases. A detailed understanding of the role of the H4 receptor in human disease remains elusive, in part because low sequence similarity between the human and rodent H4 receptors complicates the translation of preclinical pharmacology to humans. This review provides an overview of H4 drug discovery programs that have studied cross-species structure-activity relationships, with a focus on the functional profiling of the 2-aminopyrimidine chemotype that has advanced to the clinic for allergy, atopic dermatitis, asthma, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Mark S Tichenor
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Robin L Thurmond
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jennifer D Venable
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brad M Savall
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
20
|
Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E. Neuronal histamine and cognitive symptoms in Alzheimer's disease. Neuropharmacology 2015; 106:135-45. [PMID: 26025658 DOI: 10.1016/j.neuropharm.2015.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/11/2015] [Accepted: 05/03/2015] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by extracellular amyloid plaque deposits, mainly composed of amyloid-beta peptide and intracellular neurofibrillary tangles consisting of aggregated hyperphosphorylated tau protein. Amyloid-beta represents a neurotoxic proteolytic cleavage product of amyloid precursor protein. The progressive cognitive decline that is associated with Alzheimer's disease has been mainly attributed to a deficit in cholinergic neurotransmission due to the continuous degeneration of cholinergic neurons e.g. in the basal forebrain. There is evidence suggesting that other neurotransmitter systems including neuronal histamine also contribute to the development and maintenance of Alzheimer's disease-related cognitive deficits. Pathological changes in the neuronal histaminergic system of such patients are highly predictive of ensuing cognitive deficits. Furthermore, histamine-related drugs, including histamine 3 receptor antagonists, have been demonstrated to alleviate cognitive symptoms in Alzheimer's disease. This review summarizes findings from animal and clinical research on the relationship between the neuronal histaminergic system and cognitive deterioration in Alzheimer's disease. The significance of the neuronal histaminergic system as a promising target for the development of more effective drugs for the treatment of cognitive symptoms is discussed. Furthermore, the option to use histamine-related agents as neurogenesis-stimulating therapy that counteracts progressive brain atrophy in Alzheimer's disease is considered. This article is part of a Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Mental Health Research and Treatment Center, Ruhr University Bochum, Germany
| | - Dorothea Dere
- Center for Psychological Consultation and Psychotherapy, Georg-August University Göttingen, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Germany
| | - Maria Angelica De Souza Silva
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Joseph P Huston
- Institute of Experimental Psychology, Center for Behavioral Neuroscience, Heinrich-Heine University of Düsseldorf, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; UFR des Sciences de la Vie (927), Université Pierre et Marie Curie Paris 6, France.
| |
Collapse
|