1
|
Rezaei H, Zarezade V, Khodadadi I, Tavilani H, Tanzadehpanah H, Karimi J. Unveiling Arformoterol as a potent LSD1 inhibitor for breast cancer treatment: A comprehensive study integrating 3D-QSAR pharmacophore modeling, molecular docking, molecular dynamics simulations and in vitro assays. Int J Biol Macromol 2024; 258:129048. [PMID: 38159701 DOI: 10.1016/j.ijbiomac.2023.129048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Lysine Specific Demethylase 1 (LSD1) has been identified as a chromatin-modifying enzyme implicated in various cancer pathogeneses, highlighting the potential for novel epigenetic cancer treatments through the development of effective inhibitors. We employed 3D-QSAR pharmacophore modeling, molecular docking, and molecular dynamics simulations to identify a promising drug candidate for LSD1 inhibition. RMSD, RMSF, H-bond, and DSSP analysis demonstrated that ZINC02599970 (Arformoterol) and ZINC13453966 exhibited the highest LSD1 inhibitory potential. Experimental validation using MCF-7 and MDA-MB-231 cell lines revealed that Arformoterol displayed potent antiproliferative activity with IC50 values of 12.30 ± 1.48 μM and 19.69 ± 1.15 μM respectively. In contrast, the IC50 values obtained for the control (tranylcypromine) in exposure to MCF-7 and MDA-MB-231 cells were 104.6 ± 1.69 μM and 77 ± 0.67 μM, respectively. Arformoterol demonstrated greater LSD1 inhibitory potency in MCF-7 cells compared to MDA-MB-231 cells. Also, the expression of genes involved in chromatin rearrangement (LSD1), angiogenesis (VEGF1), cell migration (RORα), signal transduction (S100A8), apoptosis, and cell cycle (p53) were investigated. Arformoterol enhanced apoptosis and induced cell cycle arrest at the G2/M phase, both in MCF-7 and MDA-MB-231 cancer cells. Based on our findings, we propose that Arformoterol represents a promising candidate for breast cancer treatment, owing to its potent LSD1 inhibitory activity.
Collapse
Affiliation(s)
- Hamzeh Rezaei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Yin Z, Liu S, Yang X, Chen M, Du J, Liu H, Yang L. LSD1-Based Reversible Inhibitors Virtual Screening and Binding Mechanism Computational Study. Molecules 2023; 28:5315. [PMID: 37513188 PMCID: PMC10383809 DOI: 10.3390/molecules28145315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the crucial targets of epigenetics, histone lysine-specific demethylase 1 (LSD1) is significant in the occurrence and development of various tumors. Although several irreversible covalent LSD1 inhibitors have entered clinical trials, the large size and polarity of the FAD-binding pocket and undesired toxicity have focused interest on developing reversible LSD1 inhibitors. In this study, targeting the substrate-binding pocket of LSD1, structure-based and ligand-based virtual screenings were adopted to expand the potential novel structures with molecular docking and pharmacophore model strategies, respectively. Through drug-likeness evaluation, ADMET screening, molecular dynamics simulations, and binding free energy screening, we screened out one and four hit compounds from the databases of 2,029,554 compounds, respectively. Generally, these hit compounds can be divided into two categories, amide (Lig2 and Comp2) and 1,2,4-triazolo-4,3-α-quinazoline (Comp3, Comp4, Comp7). Among them, Comp4 exhibits the strongest binding affinity. Finally, the binding mechanisms of the hit compounds were further calculated in detail by the residue free energy decomposition. It was found that van der Waals interactions contribute most to the binding, and FAD is also helpful in stabilizing the binding and avoiding off-target effects. We believe this work not only provides a solid theoretical foundation for the design of LSD1 substrate reversible inhibitors, but also expands the diversity of parent nucleus, offering new insights for synthetic chemists.
Collapse
Affiliation(s)
- Zhili Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengguo Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
| | - Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yang GJ, Liu YJ, Ding LJ, Tao F, Zhu MH, Shi ZY, Wen JM, Niu MY, Li X, Xu ZS, Qin WJ, Fei CJ, Chen J. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: Molecular mechanisms and therapeutic significance. Front Pharmacol 2022; 13:989575. [PMID: 36188536 PMCID: PMC9523086 DOI: 10.3389/fphar.2022.989575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen-Yuan Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Juan-Ming Wen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng-Yao Niu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhan-Song Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wan-Jia Qin
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhou J, Wu S, Lee BG, Chen T, He Z, Lei Y, Tang B, Hirst JD. Machine-Learning-Enabled Virtual Screening for Inhibitors of Lysine-Specific Histone Demethylase 1. Molecules 2021; 26:7492. [PMID: 34946572 PMCID: PMC8707381 DOI: 10.3390/molecules26247492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022] Open
Abstract
A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular fingerprints. The dataset, consisting of 931 molecules with LSD1 inhibition activity, was obtained from the ChEMBL database. An evaluation of several candidate algorithms on the main dataset revealed that the support vector regressor gave the best model, with a coefficient of determination (R2) of 0.703. Virtual screening, using this model, identified five predicted potent inhibitors from the ZINC database comprising more than 300,000 molecules. The virtual screening recovered a known inhibitor, RN1, as well as four compounds where activity against LSD1 had not previously been suggested. Thus, we performed a machine-learning-enabled virtual screening of LSD1 inhibitors using only the structural information of the molecules.
Collapse
Affiliation(s)
- Jiajun Zhou
- Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (J.Z.); (S.W.); (T.C.); (Z.H.); (Y.L.)
| | - Shiying Wu
- Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (J.Z.); (S.W.); (T.C.); (Z.H.); (Y.L.)
| | - Boon Giin Lee
- School of Computer Science, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China;
| | - Tianwei Chen
- Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (J.Z.); (S.W.); (T.C.); (Z.H.); (Y.L.)
| | - Ziqi He
- Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (J.Z.); (S.W.); (T.C.); (Z.H.); (Y.L.)
| | - Yukun Lei
- Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (J.Z.); (S.W.); (T.C.); (Z.H.); (Y.L.)
| | - Bencan Tang
- Key Laboratory for Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; (J.Z.); (S.W.); (T.C.); (Z.H.); (Y.L.)
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
6
|
In silico evaluation of 5-hydroxypyrazoles as LSD1 inhibitors based on molecular docking derived descriptors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Lee A, Borrello MT, Ganesan A. LSD
(Lysine‐Specific Demethylase): A Decade‐Long Trip from Discovery to Clinical Trials. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527809257.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Sun XD, Zheng YC, Ma CY, Yang J, Gao QB, Yan Y, Wang ZZ, Li W, Zhao W, Liu HM, Ding L. Identifying the novel inhibitors of lysine-specific demethylase 1 (LSD1) combining pharmacophore-based and structure-based virtual screening. J Biomol Struct Dyn 2018; 37:4200-4214. [PMID: 30366512 DOI: 10.1080/07391102.2018.1538903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) has been reported to connect with a range of solid tumors. Thus, the exploration of LSD1 inhibitors has emerged as an effective strategy for cancer treatment. In this study, we constructed a pharmacophore model based on a series of flavin adenine dinucleotide (FAD)-competing inhibitors bearing triazole - dithiocarbamate scaffold combining docking, structure-activity relationship (SAR) study, and molecular dynamic (MD) simulation. Meanwhile, another pharmacophore model was also constructed manually, relying on several speculated substrate-competing inhibitors and reported putative vital interactions with LSD1. On the basis of the two pharmacophore models, multi-step virtual screenings (VSs) were performed against substrate-binding pocket and FAD-binding pocket, respectively, combining pharmacophore-based and structure-based strategy to exploit novel LSD1 inhibitors. After bioassay evaluation, four compounds among 21 hits with diverse and novel scaffolds exhibited inhibition activity at the range of 3.63-101.43 μM. Furthermore, substructure-based enrichment was performed, and four compounds with a more potent activity were identified. After that, the time-dependent assay proved that the most potent compound with IC50 2.21 μM inhibits LSD1 activity in a manner of time-independent. In addition, the compound exhibited a cellular inhibitory effect against LSD1 in MGC-803 cells and may inhibit cell migration and invasion by reversing EMT in cultured gastric cancer cells. Considering the binding mode and SAR of the series of compounds, we could roughly deem that these compounds containing 3-methylxanthine scaffold act through occupying substrate-binding pocket competitively. This study presented a new starting point to develop novel LSD1 inhibitors.
Collapse
Affiliation(s)
- Xu-Dong Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Yi-Chao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Chao-Ya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Jing Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Qi-Bing Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Ying Yan
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Zhi-Zheng Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Wen Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Wen Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , PR China
| |
Collapse
|
9
|
Yang GJ, Lei PM, Wong SY, Ma DL, Leung CH. Pharmacological Inhibition of LSD1 for Cancer Treatment. Molecules 2018; 23:E3194. [PMID: 30518104 PMCID: PMC6320820 DOI: 10.3390/molecules23123194] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Lysine-specific demethylase 1A (LSD1, also named KDM1A) is a demethylase that can remove methyl groups from histones H3K4me1/2 and H3K9me1/2. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, and is associated with inferior prognosis. Pharmacological inhibition of LSD1 has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of LSD1, its role in carcinogenesis, a comparison of currently available approaches for screening LSD1 inhibitors, a classification of LSD1 inhibitors, and its potential as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Pui-Man Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Suk-Yu Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
10
|
Xu S, Zhou C, Liu R, Zhu Q, Xu Y, Lan F, Zha X. Optimization of 5-arylidene barbiturates as potent, selective, reversible LSD1 inhibitors for the treatment of acute promyelocytic leukemia. Bioorg Med Chem 2018; 26:4871-4880. [PMID: 30153955 DOI: 10.1016/j.bmc.2018.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
Histone lysine specific demethylase 1 (LSD1) is overexpressed in diverse hematologic disorders and recognized as a promising target for blood medicines. In this study, molecular docking-based virtual screening united with bioevaluation was utilized to identify novel skeleton of 5-arylidene barbiturate as small-molecule inhibitors of LSD1. Among the synthesized derivatives, 12a exhibited reversible and potent inhibition (IC50 = 0.41 μM) and high selectivity over the MAO-A and MAO-B. Notably, 12a strongly induced differentiation effect on acute promyelocytic leukemia NB4 cell line and distinctly escalated the methylation level on histone 3 lysine 4 (H3K4). Our findings indicate that 5-arylidene barbiturate may represent a new skeleton of LSD1 inhibitors and 12a deserve as a promising agent for the further research.
Collapse
Affiliation(s)
- Siyuan Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Chen Zhou
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rongfeng Liu
- Shanghai ChemPartner Co. Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics and Metabolism, Ministry of Science and Technology, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Lu W, Zhang R, Jiang H, Zhang H, Luo C. Computer-Aided Drug Design in Epigenetics. Front Chem 2018; 6:57. [PMID: 29594101 PMCID: PMC5857607 DOI: 10.3389/fchem.2018.00057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Epigenetic dysfunction has been widely implicated in several diseases especially cancers thus highlights the therapeutic potential for chemical interventions in this field. With rapid development of computational methodologies and high-performance computational resources, computer-aided drug design has emerged as a promising strategy to speed up epigenetic drug discovery. Herein, we make a brief overview of major computational methods reported in the literature including druggability prediction, virtual screening, homology modeling, scaffold hopping, pharmacophore modeling, molecular dynamics simulations, quantum chemistry calculation, and 3D quantitative structure activity relationship that have been successfully applied in the design and discovery of epi-drugs and epi-probes. Finally, we discuss about major limitations of current virtual drug design strategies in epigenetics drug discovery and future directions in this field.
Collapse
Affiliation(s)
- Wenchao Lu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Rukang Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Xi J, Xu S, Wu L, Ma T, Liu R, Liu YC, Deng D, Gu Y, Zhou J, Lan F, Zha X. Design, synthesis and biological activity of 3-oxoamino-benzenesulfonamides as selective and reversible LSD1 inhibitors. Bioorg Chem 2017; 72:182-189. [PMID: 28460360 DOI: 10.1016/j.bioorg.2017.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 12/09/2022]
Abstract
Lysine specific demethylase 1 (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from H3 at Lys4 and is recognized as a promising therapeutic target for cancer and other diseases. Here, a series of 3-oxoamino-benzenesulfonamides were synthesized and evaluated for their inhibitory activity against LSD1. Compounds 7b and 7h showed the most potent inhibition with the IC50 values of 9.5 and 6.9μM, respectively. Furthermore, the LSD1 inhibition of 7b and 7h were reversible and selective. Docking study presented the possible binding mode between 7b, 7h and the LSD1 active site. Taken together, 3-oxoamino-benzenesulfonamides may represent a new class of reversible LSD1 inhibitors and 7b and 7h were two hit compounds deserved further structural optimization.
Collapse
Affiliation(s)
- Jiayue Xi
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Biochemical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Siyuan Xu
- Laboratory of Epigenetics, Institute of Biochemical Sciences, Fudan University, 131 Dong'An Road, Shanghai 200032, PR China
| | - Liming Wu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Biochemical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Tianfang Ma
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Biochemical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Rongfeng Liu
- Shanghai ChemPartner Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Dawei Deng
- Department of Biochemical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yueqing Gu
- Department of Biochemical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Fei Lan
- Laboratory of Epigenetics, Institute of Biochemical Sciences, Fudan University, 131 Dong'An Road, Shanghai 200032, PR China.
| | - Xiaoming Zha
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Biochemical Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Abstract
![]()
Post-translational
modifications of histones by protein methyltransferases
(PMTs) and histone demethylases (KDMs) play an important role in the
regulation of gene expression and transcription and are implicated
in cancer and many other diseases. Many of these enzymes also target
various nonhistone proteins impacting numerous crucial biological
pathways. Given their key biological functions and implications in
human diseases, there has been a growing interest in assessing these
enzymes as potential therapeutic targets. Consequently, discovering
and developing inhibitors of these enzymes has become a very active
and fast-growing research area over the past decade. In this review,
we cover the discovery, characterization, and biological application
of inhibitors of PMTs and KDMs with emphasis on key advancements in
the field. We also discuss challenges, opportunities, and future directions
in this emerging, exciting research field.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael L Martini
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| |
Collapse
|
14
|
Niwa H, Umehara T. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics 2017; 12:340-352. [PMID: 28277979 PMCID: PMC5453194 DOI: 10.1080/15592294.2017.1290032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until 2004, many researchers believed that protein methylation in eukaryotic cells was an irreversible reaction. However, the discovery of lysine-specific demethylase 1 in 2004 drastically changed this view and the concept of chromatin regulation. Since then, the enzymes responsible for lysine demethylation and their cellular substrates, biological significance, and selective regulation have become major research topics in epigenetics and chromatin biology. Many cell-permeable inhibitors for lysine demethylases have been developed, including both target-specific and nonspecific inhibitors. Structural understanding of how these inhibitors bind to lysine demethylases is crucial both for validation of the inhibitors as chemical probes and for the rational design of more potent, target-specific inhibitors. This review focuses on published small-molecule inhibitors targeted at the two flavin adenine dinucleotide-dependent lysine demethylases, lysine-specific demethylases 1 and 2, and how the inhibitors interact with the tertiary structures of the enzymes.
Collapse
Affiliation(s)
- Hideaki Niwa
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan
| | - Takashi Umehara
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan.,b PRESTO, Japan Science and Technology Agency (JST) , Honcho, Kawaguchi , Saitama , Japan
| |
Collapse
|
15
|
Zou F, Yang Y, Ma T, Xi J, Zhou J, Zha X. Identification of novel MEK1 inhibitors by pharmacophore and docking based virtual screening. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1788-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Design, synthesis and biological activity of N-(3-substituted-phenyl)benzenesulfonamides as selective and reversible LSD1 inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
McAllister TE, England KS, Hopkinson RJ, Brennan PE, Kawamura A, Schofield CJ. Recent Progress in Histone Demethylase Inhibitors. J Med Chem 2016; 59:1308-29. [PMID: 26710088 DOI: 10.1021/acs.jmedchem.5b01758] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is increasing interest in targeting histone N-methyl-lysine demethylases (KDMs) with small molecules both for the generation of probes for target exploration and for therapeutic purposes. Here we update on previous reviews on the inhibition of the lysine-specific demethylases (LSDs or KDM1s) and JmjC families of N-methyl-lysine demethylases (JmjC KDMs, KDM2-7), focusing on the academic and patent literature from 2014 to date. We also highlight recent biochemical, biological, and structural studies which are relevant to KDM inhibitor development.
Collapse
Affiliation(s)
- Tom E McAllister
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Katherine S England
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Akane Kawamura
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
18
|
Zou F, Pusch S, Eisel J, Ma T, Zhu Q, Deng D, Gu Y, Xu Y, von Deimling A, Zha X. Identification of a novel selective inhibitor of mutant isocitrate dehydrogenase 1 at allosteric site by docking-based virtual screening. RSC Adv 2016. [DOI: 10.1039/c6ra21617j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Optimal docking was employed to screen SPECS compound library, followed by cellular assays of mutant and wild type of IDH1.
Collapse
|