1
|
Wang R, Sun H, Chen W, Zhao B, Chen L. Molecular basis of ssDNA recognition by RBM45 protein of neurodegenerative disease from multiple molecular dynamics simulations and energy predictions. J Mol Graph Model 2023; 118:108377. [PMID: 36435031 DOI: 10.1016/j.jmgm.2022.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases (NDD) are a group of cognitive and behavioral disorders characterized by progressive loss of neuronal structure and function. As the population ages, the incidence is getting higher and higher, but there is currently no effective treatment. The details of RNA/DNA recognition by the RNA-binding protein RBM45 closely related to neurodegenerative diseases through its two tandem RNA-recognition domains at its N-terminus have important implications for structure-based drug discovery against degenerative diseases. To explore the key characteristics of interaction between ssDNA and RBM45, we performed multiple molecular dynamics (MD) simulations along with MM-PBSA energy prediction on the complexes of wild type (WT) and three mutant RBM45s (K100A, F124A/Y165A, and F29A/F70A/F124A/Y165A) with ssDNA, respectively. The findings suggest that these mutated residues of RBM45 modify the interaction of their surrounding residues with ssDNA, thereby affecting RBM45 protein binding to ssDNA. In contrast with WT RBM45 protein, variations in van der Waals and electrostatic interactions with ssDNA caused by these three RBM45 mutants are critical to affect binding between them. In addition, energy analysis showed that RBM45 is a specific ssDNA-binding protein. The results of our work provide valuable theoretical guidance for the design effective drugs of NDD.
Collapse
Affiliation(s)
- Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Han Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China.
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China; Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar, 161006, PR China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China.
| |
Collapse
|
2
|
Wang R, Zheng Q. Multiple Molecular Dynamics Simulations and Free-Energy Predictions Uncover the Susceptibility of Variants of HIV-1 Protease against Inhibitors Darunavir and KNI-1657. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14407-14418. [PMID: 34851643 DOI: 10.1021/acs.langmuir.1c02348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is considered to be the main targets of anti-AIDS drug design because of its role in the proteolytic processing of viral polyproteins. However, the emergence of drug-resistant HIV has become a major problem in the therapy of HIV-1-infected patients. Focused on the complexes of wild type (WT) PR and two mutant PRs (V32I/L33F/I54M/V82I and V32I/L33F/I54M/I84 V) with inhibitors Darunavir (DRV) and KNI-1657 (KNI), respectively, we have conducted research on the conformational dynamics and the resistance mechanism caused by residue mutations through multiple molecular dynamics (MD) simulations combined with an energy (MM-PBSA and solvated interaction energy (SIE)) prediction. The results indicate that mutated residues of PR alter the distance between flap regions and catalytic sites, the volume of the inner catalytic site, and the curling degree of the flap tips, thereby affecting DRV and KNI inhibitor binding to PR. These mutated residues reduced the binding affinity of the two mutant PRs to DRV, resulting in drug resistance, whereas the two mutant PRs increase the binding affinity with KNI, indicating they enhance the sensitivity to KNI. Compared with the WT PR, the changes in van der Waals interaction and electrostatic interaction in the two variant PRs play a vital part in the binding of PR with DRV and KNI. These results may supply valuable guidance for the design of anti-AIDS drugs targeting PR.
Collapse
|
3
|
Sk MF, Jonniya NA, Kar P. Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5892-5909. [DOI: 10.1080/07391102.2020.1794965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
4
|
Peng C, Wang J, Xu Z, Cai T, Zhu W. Accurate prediction of relative binding affinities of a series of HIV-1 protease inhibitors using semi-empirical quantum mechanical charge. J Comput Chem 2020; 41:1773-1780. [PMID: 32352193 DOI: 10.1002/jcc.26218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/03/2020] [Accepted: 04/18/2020] [Indexed: 11/05/2022]
Abstract
A major challenge in computer-aided drug design is the accurate estimation of ligand binding affinity. Here, a new approach that combines the adaptive steered molecular dynamics (ASMD) and partial atomic charges calculated by semi-empirical quantum mechanics (SQMPC), namely ASMD-SQMPC, is suggested to predict the ligand binding affinities, with 24 HIV-1 protease inhibitors as testing examples. In the ASMD-SQMPC, the relative binding free energy (ΔG) is reflected by the average maximum potential of mean force (<PMF>max ) between bound and unbound states. The correlation coefficient (R2 ) between the <PMF>max and experimentally determined ΔG is 0.86, showing a significant improvement compared with the conventional ASMD (R2 = 0.52). Therefore, this study provides an efficient approach to predict the relative ΔG and reveals the significance of precise partial atomic charges in the theoretical simulations.
Collapse
Affiliation(s)
- Cheng Peng
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China
| | - Tingting Cai
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, China
| |
Collapse
|
5
|
An activity prediction model for steroidal and triterpenoidal inhibitors of Acetylcholinesterase enzyme. J Comput Aided Mol Des 2020; 34:1079-1090. [PMID: 32632601 DOI: 10.1007/s10822-020-00324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
Nowadays, the importance of computational methods in the design of therapeutic agents in a more efficient way is indisputable. Particularly, these methods have been important in the design of novel acetylcholinesterase enzyme inhibitors related to Alzheimer's disease. In this sense, in this report a computational model of linear prediction of acetylcholinesterase inhibitory activity of steroids and triterpenes is presented. The model is based in a correlation between binding energies obtained from molecular dynamic simulations (after docking studies) and [Formula: see text] values of a training set. This set includes a family of natural and semi-synthetic structurally related alkaloids reported in bibliography. These types of compounds, with some structural complexity, could be used as building blocks for the synthesis of many important biologically active compounds Therefore, the present study proposes an alternative based on the use of conventional and easily accessible tools to make progress on the rational design of molecules with biological activity.
Collapse
|
6
|
Ngo ST, Hong ND, Quynh Anh LH, Hiep DM, Tung NT. Effective estimation of the inhibitor affinity of HIV-1 protease via a modified LIE approach. RSC Adv 2020; 10:7732-7739. [PMID: 35492181 PMCID: PMC9049864 DOI: 10.1039/c9ra09583g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
The inhibition of the Human Immunodeficiency Virus Type 1 Protease (HIV-1 PR) can prevent the synthesis of new viruses. Computer-aided drug design (CADD) would enhance the discovery of new therapies, through which the estimation of ligand-binding affinity is critical to predict the most efficient inhibitor. A time-consuming binding free energy method would reduce the usefulness of CADD. The modified linear interaction energy (LIE) approach emerges as an appropriate protocol that performs this task. In particular, the polar interaction free energy, which is obtained via numerically resolving the linear Poisson-Boltzmann equation, plays as an important role in driving the binding mechanism of the HIV-1 PR + inhibitor complex. The electrostatic interaction energy contributes to the attraction between two molecules, but the vdW interaction acts as a repulsive factor between the ligand and the HIV-1 PR. Moreover, the ligands were found to adopt a very strong hydrophobic interaction with the HIV-1 PR. Furthermore, the results obtained corroborate the high accuracy and precision of computational studies with a large correlation coefficient value R = 0.83 and a small RMSE δ RMSE = 1.25 kcal mol-1. This method is less time-consuming than the other end-point methods, such as the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and free energy perturbation (FEP) approaches. Overall, the modified LIE approach would provide ligand-binding affinity with HIV-1 PR accurately, precisely, and rapidly, resulting in a more efficient design of new inhibitors.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Nam Dao Hong
- University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Le Huu Quynh Anh
- Department of Climate Change and Renewable Energy, Ho Chi Minh City University of Natural Resources and Environment Ho Chi Minh City Vietnam
| | | | - Nguyen Thanh Tung
- Institute of Materials Science & Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| |
Collapse
|
7
|
Prediction of AChE-ligand affinity using the umbrella sampling simulation. J Mol Graph Model 2019; 93:107441. [DOI: 10.1016/j.jmgm.2019.107441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 11/18/2022]
|
8
|
Ngo ST, Mai BK, Derreumaux P, Vu VV. Adequate prediction for inhibitor affinity of Aβ 40 protofibril using the linear interaction energy method. RSC Adv 2019; 9:12455-12461. [PMID: 35515829 PMCID: PMC9063661 DOI: 10.1039/c9ra01177c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022] Open
Abstract
The search for efficient inhibitors targeting Aβ oligomers and fibrils is an important issue in Alzheimer's disease treatment. As a consequence, an accurate and computationally cheap approach to estimate the binding affinity for many ligands interacting with Aβ peptides is very important. Here, the calculated binding free energies of 30 ligands interacting with 12Aβ11-40 peptides using the linear interaction energy (LIE) approach are found to be in good correlation with experimental data (R = 0.79). The binding affinities of these complexes are also calculated by using free energy perturbation (FEP) and molecular mechanic/Poisson-Boltzmann surface area (MM/PBSA) methods. The time-consuming FEP method provides results with similar correlation (R = 0.72), whereas MM/PBSA calculations show very low correlation with experimental data (R = 0.27). In all complexes, van der Waals interactions contribute much more than electrostatic interactions. The LIE model, which is much less time-consuming than both the FEP and MM/PBSA methods, opens the door to accurate and rapid affinity prediction of ligands with Aβ peptides and the design of new ligands.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Binh Khanh Mai
- Institute for Computational Science and Technology (ICST), Quang Trung Software City Ho Chi Minh City Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, IBPC, Université Paris Diderot 13 rue Pierre et Marie Curie 75005 Paris France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Van V Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Ngo ST, Vu KB, Bui LM, Vu VV. Effective Estimation of Ligand-Binding Affinity Using Biased Sampling Method. ACS OMEGA 2019; 4:3887-3893. [PMID: 31459599 PMCID: PMC6648447 DOI: 10.1021/acsomega.8b03258] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/08/2019] [Indexed: 05/09/2023]
Abstract
The binding between two biomolecules is one of the most critical factors controlling many bioprocesses. Therefore, it is of great interest to derive a reliable method to calculate the free binding energy between two biomolecules. In this work, we have demonstrated that the binding affinity of ligands to proteins can be determined through biased sampling simulations. The umbrella sampling (US) method was applied on 20 protein-ligand complexes, including the cathepsin K (CTSK), type II dehydroquinase (DHQase), heat shock protein 90 (HSP90), and factor Xa (FXa) systems. The ligand-binding affinity was evaluated as the difference between the largest and smallest values of the free-energy curve, which was obtained via a potential of mean force analysis. The calculated affinities differ sizably from the previously reported experimental values, with an average difference of ∼3.14 kcal/mol. However, the calculated results are in good correlation with the experimental data, with correlation coefficients of 0.76, 0.87, 0.96, and 0.97 for CTSK, DHQase, HSP90, and FXa, respectively. Thus, the binding free energy of a new ligand can be reliably estimated using our US approach. Furthermore, the root-mean-square errors (RMSEs) of binding affinity of these systems are 1.13, 0.90, 0.37, and 0.25 kcal/mol, for CTSK, DHQase, HSP90, and FXa, respectively. The small RMSE values indicate the good precision of the biased sampling method that can distinguish the ligands exhibiting similar binding affinities.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical
and Computational Biophysics, Ton Duc Thang
University, Ho Chi Minh City 7000000, Vietnam
- Faculty
of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000000, Vietnam
| | - Khanh B. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Le Minh Bui
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Van V. Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
10
|
Etersalate prevents the formations of 6Aβ16-22 oligomer: An in silico study. PLoS One 2018; 13:e0204026. [PMID: 30226897 PMCID: PMC6143259 DOI: 10.1371/journal.pone.0204026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022] Open
Abstract
Oligomerization of amyloid beta (Aβ) peptides has been considered as the crucially causative agent in the development of Alzheimer's disease. Etersalate, a nonsteroidal anti-inflammatory oral drug (United State Food and Drug Administration—Unique Ingredient Identifier: 653GN04T2G) was previously suggested to bind well to proto-fibrils of Aβ peptides in silico. Here, the effect of etersalate on the oligomerization of soluble Aβ16–22 hexamer (6Aβ16–22) were extensively investigated using temperature replica exchange molecular dynamics (REMD) simulations over ~16.8 μs in total for 48 replicas (350 ns per replica). The results reveal that etersalate can enter the inner space or bind on the surface of 6Aβ16–22 conformations, which destabilizes the hexamer. Etersalate was predicted to able to cross the blood brain barrier using prediction of absorption, distribution, metabolism, and excretion—toxicity (preADMET) tools. Overall, although the investigation was performed with the low concentration of trial inhibitor, the obtained results indicate that etersalate is a potential drug candidate for AD through inhibiting formation of Aβ oligomers with the average binding free energy of -11.7 kcal/mol.
Collapse
|
11
|
Ngo ST, Hung HM, Hong ND, Tung NT. The influences of E22Q mutant on solvated 3Aβ 11-40 peptide: A REMD study. J Mol Graph Model 2018; 83:122-128. [PMID: 29902674 DOI: 10.1016/j.jmgm.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
The residue E22 plays a critical role in the aggregation process of Amyloid beta (Aβ) peptides. The effect of E22Q mutant on the shapes of the solvated Aβ11-40 trimer is clarified using a replica exchange molecular dynamics (REMD) simulation employing ∼20.6 μs of MD simulations with 48 disparate replicas. The increase of intramolecular polar contacts and salt bridge between the residue D23 to residues (24-29) was observed. The residual secondary structure of the mutated trimer is shifted in a similar way to the picture observed in previous investigations of F19W mutant. The free energy surface (FES) of the mutated E22Q system has a fewer number of minima in comparison with the wild-type trimer. The optimized shapes of the mutated E22Q form a significant increase in beta structure (47%) and serious decrease in coil content (46%) compared with the wild-type (of 36 and 56%, respectively). The binding affinity of constituting chains to the rest is of -43.7 ± 6.5 kcal/mol, implying that the representative structure of E22Q is more stable than the wild-type one. Furthermore, the E22Q mutant increases the size of stable structures due to larger collision cross section (CCS) and solvent accessible area (SASA). The observed results may enhance the Aβ inhibition throughout the contribution to the knowledge of the Aβ oligomerization/aggregation.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Huynh Minh Hung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Nam Dao Hong
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
12
|
Tam NM, Vu KB, Vu VV, Ngo ST. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Truong DT, Li MS. Probing the Binding Affinity by Jarzynski's Nonequilibrium Binding Free Energy and Rupture Time. J Phys Chem B 2018; 122:4693-4699. [PMID: 29630379 DOI: 10.1021/acs.jpcb.8b02137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding affinity of a small ligand to a receptor is the important quantity in drug design, and it might be characterized by different quantities. The most popular one is the binding free energy, which can be estimated by several methods in conventional molecular dynamics simulation. So far in steered molecular dynamics (SMD), one can use either the rupture force or nonequilibrium pulling work as a measure for binding affinity. In this paper, we have shown that the nonequilibrium binding free energy Δ GneqJar, obtained by Jarzynski's equality at a finite pulling speed, has good correlation with experimental data on inhibition constants, implying that this quantity can be used as a good scoring function for binding affinity. A similar correlation has also been disclosed for binding and unbinding free energy barriers. Applying the SMD method to unbinding of 23 small compounds from the binding site of β-lactamase protein, a bacteria-produced enzyme, we have demonstrated that the rupture or unbinding time strongly correlates with experimental data with correlation level R ≈ 0.84. As follows from the Jarzynski's equality, the rupture time depends on the unbinding barrier exponentially. We show that Δ GneqJar, the rupture time, and binding and unbinding free energy barriers are good descriptors for binding affinity. Our observation may be useful for fast screening of potential leads as the SMD simulation is not time-consuming. On the basis of nonequilibrium simulation, we disclosed that, in agreement with the experiment, the binding time is much longer than the unbinding one.
Collapse
Affiliation(s)
- Duc Toan Truong
- Institute for Computational Sciences and Technology , SBI Building, Quang Trung Software City , Tan Chanh Hiep Ward, District 12, Ho Chi Minh City , Vietnam.,Department of Theoretical Physics, Faculty of Physics and Engineering Physics , Ho Chi Minh University of Science, Vietnam National University , 227 Nguyen Van Cu, Dist. 5 , Ho Chi Minh City , Vietnam
| | - Mai Suan Li
- Institute for Computational Sciences and Technology , SBI Building, Quang Trung Software City , Tan Chanh Hiep Ward, District 12, Ho Chi Minh City , Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46 , 02-668 Warsaw , Poland
| |
Collapse
|
14
|
Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: Molecular simulation approaches. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Evaluation of the absolute affinity of neuraminidase inhibitor using steered molecular dynamics simulations. J Mol Graph Model 2017; 77:137-142. [PMID: 28854402 DOI: 10.1016/j.jmgm.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/20/2022]
Abstract
The absolute free energy difference of binding (ΔG) between neuraminidase and its inhibitor was evaluated using fast pulling of ligand (FPL) method over steered molecular dynamics (SMD) simulations. The metric was computed through linear interaction approximation. Binding nature was described by free energy differences of electrostatic and van der Waals (vdW) interactions. The finding indicates that vdW metric is dominant over electrostatics in binding process. The computed values are in good agreement with experimental data with a correlation coefficient of R=0.82 and error of σΔGexp=2.2kcal/mol. The results were observed using Amber99SB-ILDN force field in comparison with CHARMM27 and GROMOS96 43a1 force fields. Obtained results may stimulate the search for an Influenza therapy.
Collapse
|
16
|
EGCG inhibits the oligomerization of amyloid beta (16-22) hexamer: Theoretical studies. J Mol Graph Model 2017; 76:1-10. [PMID: 28658644 DOI: 10.1016/j.jmgm.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/21/2022]
Abstract
An extensive replica exchange molecular dynamics (REMD) simulation was performed to investigate the progress patterns of the inhibition of (-)-epigallocatechin-3-gallate (EGCG) on the Aβ16-22 hexamer. Structural variations of the oligomers without and with EGCG were monitored and analyzed in detail. It has been found that EGCG prevents the formation of Aβ oligomer through two different ways by either accelerating the Aβ oligomerization or reducing the β-content of the hexamer. It also decreases the potential "highly toxic" conformations of Aβ oligomer, which is related to the conformations having high order β-sheet sizes. Both electrostatic and van der Waals interaction energies are found to be involved to the binding process. Computed results using quantum chemical methods show that the π-π stacking is a critical factor of the interaction between EGCG and the peptides. As a result, the binding free energy of the EGCG to the Aβ peptides is slightly larger than that of the curcumin.
Collapse
|
17
|
Ngo ST, Nguyen MT, Nguyen MT. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Truong DT, Nguyen MT, Vu VV, Ngo ST. Fast pulling of ligand approach for the design of β-secretase 1 inhibitors. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Ngo ST, Hung HM, Tran KN, Nguyen MT. Replica exchange molecular dynamics study of the amyloid beta (11–40) trimer penetrating a membrane. RSC Adv 2017. [DOI: 10.1039/c6ra26461a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transmembrane Aβ11–40 trimer is investigated for the first time using REMD and FEP.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Khoa Nhat Tran
- Department of Biological Sciences
- University of Maryland Baltimore County
- 21250 Baltimore
- USA
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
20
|
Ngo ST, Luu XC, Nguyen MT, Le CN, Vu VV. In silico studies of solvated F19W amyloid β (11–40) trimer. RSC Adv 2017. [DOI: 10.1039/c7ra07187f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
REMD studies shows that F19W mutation does not change in the overall structure of Aβ11–40 trimer significantly but increases it flexibility, consistent with the observed formation of the same fibril structures at slower rates.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | - Xuan-Cuong Luu
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | | | - Chinh N. Le
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | - Van V. Vu
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| |
Collapse
|
21
|
Ngo ST, Hung HM, Truong DT, Nguyen MT. Replica exchange molecular dynamics study of the truncated amyloid beta (11–40) trimer in solution. Phys Chem Chem Phys 2017; 19:1909-1919. [DOI: 10.1039/c6cp05511g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of the 3Aβ11–40 oligomer is determined for the first time using T-REMD simulations.
Collapse
Affiliation(s)
- Son Tung Ngo
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| | | | - Duc Toan Truong
- Department of Theoretical Physics
- Ho Chi Minh City University of Science
- Ho Chi Minh City
- Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Applied Sciences
| |
Collapse
|
22
|
Fast and accurate determination of the relative binding affinities of small compounds to HIV-1 protease using non-equilibrium work. J Comput Chem 2016; 37:2734-2742. [DOI: 10.1002/jcc.24502] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
|
23
|
Ngo ST, Fang ST, Huang SH, Chou CL, Huy PDQ, Li MS, Chen YC. Anti-arrhythmic Medication Propafenone a Potential Drug for Alzheimer's Disease Inhibiting Aggregation of Aβ: In Silico and in Vitro Studies. J Chem Inf Model 2016; 56:1344-56. [PMID: 27304669 DOI: 10.1021/acs.jcim.6b00029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia caused by the formation of Aβ aggregates. So far, no effective medicine for the treatment of AD is available. Many efforts have been made to find effective medicine to cope with AD. Curcumin is a drug candidate for AD, being a potent anti-amyloidogenic compound, but the results of clinical trials for it were either negative or inclusive. In the present study, we took advantages from accumulated knowledge about curcumin and have screened out four compounds that have chemical and structural similarity with curcumin more than 80% from all FDA-approved oral drugs. Using all-atom molecular dynamics simulation and the free energy perturbation method we showed that among predicted compounds anti-arrhythmic medication propafenone shows the best anti-amyloidogenic activity. The in vitro experiment further revealed that it can inhibit Aβ aggregation and protect cells against Aβ induced cytotoxicity to almost the same extent as curcumin. Our results suggest that propafenone may be a potent drug for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | | | | - Chao-Liang Chou
- Department of Neurology, Mackay Memorial Hospital , New Taipei City, 252 Taiwan
| | - Pham Dinh Quoc Huy
- Institute for Computational Science and Technology , Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|