1
|
Integration of Ligand-Based and Structure-Based Methods for the Design of Small-Molecule TLR7 Antagonists. Molecules 2022; 27:molecules27134026. [PMID: 35807273 PMCID: PMC9268101 DOI: 10.3390/molecules27134026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptor 7 (TLR7) is activated in response to the binding of single-stranded RNA. Its over-activation has been implicated in several autoimmune disorders, and thus, it is an established therapeutic target in such circumstances. TLR7 small-molecule antagonists are not yet available for therapeutic use. We conducted a ligand-based drug design of new TLR7 antagonists through a concerted effort encompassing 2D-QSAR, 3D-QSAR, and pharmacophore modelling of 54 reported TLR7 antagonists. The developed 2D-QSAR model depicted an excellent correlation coefficient (R2training: 0.86 and R2test: 0.78) between the experimental and estimated activities. The ligand-based drug design approach utilizing the 3D-QSAR model (R2training: 0.95 and R2test: 0.84) demonstrated a significant contribution of electrostatic potential and steric fields towards the TLR7 antagonism. This consolidated approach, along with a pharmacophore model with high correlation (Rtraining: 0.94 and Rtest: 0.92), was used to design quinazoline-core-based hTLR7 antagonists. Subsequently, the newly designed molecules were subjected to molecular docking onto the previously proposed binding model and a molecular dynamics study for a better understanding of their binding pattern. The toxicity profiles and drug-likeness characteristics of the designed compounds were evaluated with in silico ADMET predictions. This ligand-based study contributes towards a better understanding of lead optimization and the future development of potent TLR7 antagonists.
Collapse
|
2
|
Selective inhibition of Rhizopus eumelanin biosynthesis by novel natural product scaffold-based designs caused significant inhibition of fungal pathogenesis. Biochem J 2020; 477:2489-2507. [PMID: 32538426 DOI: 10.1042/bcj20200310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Melanin is a dark color pigment biosynthesized naturally in most living organisms. Fungal melanin is a major putative virulence factor of Mucorales fungi that allows intracellular persistence by inducing phagosome maturation arrest. Recently, it has been shown that the black pigments of Rhizopus delemar is of eumelanin type, that requires the involvement of tyrosinase (a copper-dependent enzyme) in its biosynthesis. Herein, we have developed a series of compounds (UOSC-1-14) to selectively target Rhizopus melanin and explored this mechanism therapeutically. The compounds were designed based on the scaffold of the natural product, cuminaldehyde, identified from plant sources and has been shown to develop non-selective inhibition of melanin production. While all synthesized compounds showed significant inhibition of Rhizopus melanin production and limited toxicity to mammalian cells, only four compounds (UOSC-1, 2, 13, and 14) were selected as promising candidates based on their selective inhibition to fungal melanin. The activity of compound UOSC-2 was comparable to the positive control kojic acid. The selected candidates showed significant inhibition of Rhizopus melanin but not human melanin by targeting the fungal tyrosinase, and with an IC50 that are 9 times lower than the reference standard, kojic acid. Furthermore, the produced white spores were phagocytized easily and cleared faster from the lungs of infected immunocompetent mice and from the human macrophages when compared with wild-type spores. Collectively, the results suggested that the newly designed derivatives, particularly UOSC-2 can serve as promising candidate to overcome persistence mechanisms of fungal melanin production and hence make them accessible to host defenses.
Collapse
|
3
|
Development of a metabolically stable topoisomerase I poison as anticancer agent. Eur J Med Chem 2020; 202:112551. [DOI: 10.1016/j.ejmech.2020.112551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
|
4
|
Debnath U, Mukherjee S, Joardar N, Sinha Babu SP, Jana K, Misra AK. Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur J Pharm Sci 2019; 134:102-115. [DOI: 10.1016/j.ejps.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022]
|
5
|
Pal S, Kumar V, Kundu B, Bhattacharya D, Preethy N, Reddy MP, Talukdar A. Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors. Comput Struct Biotechnol J 2019; 17:291-310. [PMID: 30867893 PMCID: PMC6396084 DOI: 10.1016/j.csbj.2019.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Camptothecin (CPT), a natural product and its synthetic derivatives exert potent anticancer activity by selectively targeting DNA Topoisomerase I (Top1) enzyme. CPT and its clinically approved derivatives are used as Top1 poisons for cancer therapy suffer from many limitations related to stability and toxicity. In order to envisage structurally diverse novel chemical entity as Top1 poison with better efficacy, Ligand-based-pharmacophore model was developed using 3D QSAR pharmacophore generation (HypoGen algorithm) methodology in Discovery studio 4.1 clients. The chemical features of 29 CPT derivatives were taken as the training set. The selected pharmacophore model Hypo1 was further validated by 33 test set molecules and used as a query model for further screening of 1,087,724 drug-like molecules from ZINC databases. These molecules were subjected to several assessments such as Lipinski rule of 5, SMART filtration and activity filtration. The molecule obtained after filtration was further scrutinized by molecular docking analysis on the active site of Top1 crystal structure (PDB ID: 1T8I). Six potential inhibitory molecules have been selected by analyzing the binding interaction and Ligand-Pharmacophore mapping with the validated pharmacophore model. Toxicity assessment TOPKAT program provided three potential inhibitory ‘hit molecules’ ZINC68997780, ZINC15018994 and ZINC38550809. MD simulation of these three molecules proved that the ligand binding into the protein-DNA cleavage complex is stable and the protein-ligands conformation remains unchanged. These three hit molecules can be utilized for designing future class of potential topoisomerase I inhibitor.
Collapse
Affiliation(s)
- Sourav Pal
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research, Kolkata, 700032, India
| | - Vinay Kumar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.,National Institute of Pharmaceutical Education And Research, Kolkata, 700054, India
| | - Biswajit Kundu
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nagothy Preethy
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.,National Institute of Pharmaceutical Education And Research, Kolkata, 700054, India
| | - Mamindla Prashanth Reddy
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.,National Institute of Pharmaceutical Education And Research, Kolkata, 700054, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.,Academy of Scientific and Innovative Research, Kolkata, 700032, India
| |
Collapse
|
6
|
Bhaumik I, Pal K, Debnath U, Karmakar P, Jana K, Misra AK. Natural product inspired allicin analogs as novel anti-cancer agents. Bioorg Chem 2019; 86:259-272. [PMID: 30731359 DOI: 10.1016/j.bioorg.2019.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
A series of novel analogs of Allicin (S-allyl prop-2-ene-1-sulfinothioate) present in garlic has been synthesized in high yield. Synthesized 23 compounds were evaluated against different breast cancer cells (MDA-MB-468 and MCF-7) and non-cancer cells (WI38). Four compounds (3f, 3h, 3m and 3u) showed significant cytotoxicity against cancer cells whereas nontoxic to the normal cells. Based on the LD50 values and selectivity index (SI), compound 3h (S-p-methoxybenzyl (p-methoxyphenyl)methanesulfinothioate) was considered as most promising anticancer agent amongst the above three compounds. Further bio-chemical studies confirmed that compound 3h promotes ROS generation, changes in mitochondrial permeability transition and induced caspase mediated DNA damage and apoptosis.
Collapse
Affiliation(s)
- Ishani Bhaumik
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Kunal Pal
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Utsab Debnath
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700 032, India
| | - Kuladip Jana
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India
| | - Anup Kumar Misra
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
7
|
Synthesis, biological evaluation and docking study of N-(2-(3,4,5-trimethoxybenzyl)benzoxazole-5-yl) benzamide derivatives as selective COX-2 inhibitor and anti-inflammatory agents. Bioorg Chem 2018; 81:191-202. [DOI: 10.1016/j.bioorg.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
|