1
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Reis RAG, Li H, Johnson M, Sobrado P. New frontiers in flavin-dependent monooxygenases. Arch Biochem Biophys 2021; 699:108765. [PMID: 33460580 DOI: 10.1016/j.abb.2021.108765] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of redox reactions in important biological processes and are responsible for the synthesis of highly complex natural products. Although much has been learned about FMO chemistry in the last ~80 years of research, several aspects of the reactions catalyzed by these enzymes remain unknown. In this review, we summarize recent advancements in the flavin-dependent monooxygenase field including aspects of flavin dynamics, formation and stabilization of reactive species, and the hydroxylation mechanism. Novel catalysis of flavin-dependent N-oxidases involving consecutive oxidations of amines to generate oximes or nitrones is presented and the biological relevance of the products is discussed. In addition, the activity of some FMOs have been shown to be essential for the virulence of several human pathogens. We also discuss the biomedical relevance of FMOs in antibiotic resistance and the efforts to identify inhibitors against some members of this important and growing family enzymes.
Collapse
Affiliation(s)
| | - Hao Li
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Maxim Johnson
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry, Blacksburg, VA, 24061, USA; Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Pandey K, Singh S, Bhatt P, Medha, Sharma M, Chaudhry A, Sharma S. DosR proteins of Mycobacterium tuberculosis upregulate effector T cells and down regulate T regulatory cells in TB patients and their healthy contacts. Microb Pathog 2018; 126:399-406. [PMID: 30476579 DOI: 10.1016/j.micpath.2018.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
It is well established that the current problem of tuberculosis (TB) can be combated by overcoming the drawbacks of the currently available BCG vaccine. This would involve incorporation of antigens that can control TB at all stages including the dormant phase which is generally ignored. Hence, DosR regulon proteins, which are expressed in latent infection, could prove to be very good vaccine candidates as they can possibly target the silent but most predominant form of TB infection. In the present study, the immune response to two DosR proteins Rv2627 and Rv2628 has been studied in PBMCs derived from normal individuals, TB patients and healthy contacts of TB patients. It was found that these antigens were capable of stimulating a strong IFN-γ+ T cell response along with accentuation of memory T cells and other protective cytokines such as IL-2 and IL-17. At the same time these proteins decreased the frequencies of immune-suppressor regulatory T cells in in vitro stimulation of PBMC from both patients and their contacts. Considering all these facts together, we suggest Rv2627 and Rv2628 to be one of the extremely promising candidates for incorporation into a post exposure subunit vaccine against TB.
Collapse
Affiliation(s)
- Kirti Pandey
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Swati Singh
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Parul Bhatt
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Medha
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Monika Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Anil Chaudhry
- Rajan Babu Institute of Pulmonary Medicine and Tuberculosis Hospital, GTB Nagar, Delhi, 110009, India.
| | - Sadhna Sharma
- DS Kothari Centre for Research and Innovation in Science Education, Miranda House, and Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Saraav I, Singh S, Pandey K, Sharma M, Sharma S. Mycobacterium tuberculosis MymA is a TLR2 agonist that activate macrophages and a T H1 response. Tuberculosis (Edinb) 2017; 106:16-24. [PMID: 28802400 DOI: 10.1016/j.tube.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Cell wall of Mycobacterium tuberculosis (M.tb) is a major source of immunogenic proteins that can be tested as vaccine candidates. MymA (Rv3083), a 55 kDa M.tb flavin containing monooxygenase, is involved in modification of mycolic acids during acidic shock following M.tb internalization in macrophage. In this study, we have investigated the role of this cell wall associated protein in activation of macrophages by toll like receptor (TLRs) engagement and subsequent signaling. Our results showed that MymA stimulation of THP1 cells and human monocyte derived macrophages (MDM) lead to upregulation of TLR2 and co-stimulatory molecules CD40, CD80, CD86 and HLA-DR. This upregulation is partially reduced by TLR2 blocking antibodies. The activation of macrophage following MymA stimulation also resulted in release of proinflammatory cytokines, TNF-α and IL-12. Moreover, MymA also polarized the immune response towards TH1 as shown by an increased IFN-γ level in the supernatant of stimulated peripheral blood mononuclear cells (PBMC). In consensus with the TLR2 signaling involving MyD88 and NF-κB, we also observed several fold increase in mRNA for TLR2, MyD88 and NF-κB on MymA induction of THP-1 and MDM by qRT-PCR. The increased production of NF-κB following recognition of MymA by TLR2 was further confirmed by HEK-TLR2 reporter cell line colorimetric assay. In conclusion, immunological evaluation revealed that MymA is a TLR2 agonist that upregulates signaling via MyD88 and NF-κB in macrophages to stimulate the release of proinflammatory cytokines. The MymA protein should be investigated further for expression in recombinant BCG as a pre-exposure vaccine or as a post-exposure subunit vaccine candidate.
Collapse
Affiliation(s)
- Iti Saraav
- D S Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, 110007, India; Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Swati Singh
- D S Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, 110007, India; Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Kirti Pandey
- D S Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, 110007, India; Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Monika Sharma
- D S Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, 110007, India; Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| | - Sadhna Sharma
- D S Kothari Centre for Research and Innovation in Science Education, Miranda House, University of Delhi, Delhi, 110007, India; Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Evolution of Phenotypic and Molecular Drug Susceptibility Testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:221-246. [PMID: 29116638 DOI: 10.1007/978-3-319-64371-7_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug Resistant Tuberculosis (DRTB) is an emerging problem world-wide. In order to control the disease and decrease the number of cases overtime a prompt diagnosis followed by an appropriate treatment should be provided to patients. Phenotypic DST based on liquid automated culture has greatly reduced the time needed to generate reliable data but has the drawback to be expensive and prone to contamination in the absence of appropriate infrastructures. In the past 10 years molecular biology tools have been developed. Those tools target the main mutations responsible for DRTB and are now globally accessible in term of cost and infrastructures needed for the implementation. The dissemination of the Xpert MTB/rif has radically increased the capacity to perform the detection of rifampicin resistant TB cases. One of the main challenges for the large scale implementation of molecular based tests is the emergence of conflicting results between phenotypic and genotypic tests. This mines the confidence of clinicians in the molecular tests and delays the initiation of an appropriate treatment. A new technique is revolutionizing the genotypic approach to DST: the WGS by Next-Generation Sequencing technologies. This methodology promises to become the solution for a rapid access to universal DST, able indeed to overcome the limitations of the current phenotypic and genotypic assays. Today the use of the generated information is still challenging in decentralized facilities due to the lack of automation for sample processing and standardization in the analysis.The growing knowledge of the molecular mechanisms at the basis of drug resistance and the introduction of high-performing user-friendly tools at peripheral level should allow the very much needed accurate diagnosis of DRTB in the near future.
Collapse
|