1
|
Bhattacharya K, Sikdar J, Hussain I, Barman D, Shrivastava AK, Sahariah BJ, Bhattacharjee A, Chanu NR, Khanal P. Targeting Melanoma with a phytochemical pool: Tailing Makisterone C. Comput Biol Med 2023; 166:107499. [PMID: 37778211 DOI: 10.1016/j.compbiomed.2023.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND AND OBJECTIVE According to World Health Organization, melanoma claims the lives of about 48000 people worldwide each year. The purpose of this study was to identify potential phytochemical pool from Diplazium esculentum against proteins that contribute to melanoma development. METHODS The research was carried to locate potentially bioactive molecules and conduct a theoretical analysis of active ingredients from DE to impact melanoma. Network pharmacology, pharmacokinetics, protein network interaction, gene enrichment, survival, and infiltration analysis were conducted. Furthermore, molecular docking and molecular dynamics simulation was carried out for makisterone C-MAPK1, MAPK3, and AKT1 complexes. RESULTS The potential phytochemical pool were identified (stigmast-5-en-3-ol, esculentic acid, rutin, and makisterone C) and based on network pharmacology and molecular docking studies, makisterone-C was proposed to be the most promising ingredient. Furthermore, the investigation revealed 14 genes as critical "hubs" involved in combating melanoma that are manipulated by the above-mentioned 4 active ingredients and modulate multiple signaling in melanoma development. CONCLUSION This study insights into the potential anti-melanoma effects of phytochemical pool from Diplazium esculentum using network pharmacology analysis, molecular docking, and simulation tailing makisterone C as a lead moiety and suggests the need for makisterone C further evaluation in intervening melanoma progression.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India; NETES Institute of Pharmaceutical Science, Guwahati, Assam, 781125, India; Royal School of Pharmacy, The Assam Royal Global University, Assam, 781035, India
| | - Jubair Sikdar
- NETES Institute of Pharmaceutical Science, Guwahati, Assam, 781125, India
| | - Imran Hussain
- NETES Institute of Pharmaceutical Science, Guwahati, Assam, 781125, India
| | - Deepchandan Barman
- NETES Institute of Pharmaceutical Science, Guwahati, Assam, 781125, India
| | - Amit Kumar Shrivastava
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicine Research Institute, Wonkwang University, Iksan, 570-749, South Korea
| | | | - Atanu Bhattacharjee
- Royal School of Pharmacy, The Assam Royal Global University, Assam, 781035, India
| | - Nongmaithem Randhoni Chanu
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India; Faculty of Pharmaceutical Science, Assam Downtown University, Assam, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India.
| |
Collapse
|
2
|
Amiran MR, Taghdir M, Joozdani FA. Molecular insights into the behavior of the allosteric and ATP-competitive inhibitors in interaction with AKT1 protein: A molecular dynamics study. Int J Biol Macromol 2023; 242:124853. [PMID: 37172698 DOI: 10.1016/j.ijbiomac.2023.124853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
AKT1 is a family of serine/threonine kinases that play a key role in regulating cell growth, proliferation, metabolism, and survival. Two significant classes of AKT1 inhibitors (allosteric and ATP-competitive) are used in clinical development, and both of them could be effective in specific conditions. In this study, we investigated the effect of several different inhibitors on two conformations of the AKT1 by computational approach. We studied the effects of four inhibitors, including MK-2206, Miransertib, Herbacetin, and Shogaol, on the inactive conformation of AKT1 protein and the effects of four inhibitors, Capivasertib, AT7867, Quercetin, and Oridonin molecules on the active conformation of AKT1 protein. The results of simulations showed that each inhibitor creates a stable complex with AKT1 protein, although AKT1/Shogaol and AKT1/AT7867 complexes showed less stability than other complexes. Based on RMSF calculations, the fluctuation of residues in the mentioned complexes is higher than in other complexes. As compared to other complexes in either of its two conformations, MK-2206 has a stronger binding free energy affinity in the inactive conformation, -203.446 kJ/mol. MM-PBSA calculations showed that the van der Waals interactions contribute more than the electrostatic interactions to the binding energy of inhibitors to AKT1 protein.
Collapse
Affiliation(s)
- Mohammad Reza Amiran
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115_111, Iran
| |
Collapse
|
3
|
Bage MG, Almohammed R, Cowling VH, Pisliakov A. A novel RNA pol II CTD interaction site on the mRNA capping enzyme is essential for its allosteric activation. Nucleic Acids Res 2021; 49:3109-3126. [PMID: 33684220 PMCID: PMC8034621 DOI: 10.1093/nar/gkab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
Recruitment of the mRNA capping enzyme (CE/RNGTT) to the site of transcription is essential for the formation of the 5' mRNA cap, which in turn ensures efficient transcription, splicing, polyadenylation, nuclear export and translation of mRNA in eukaryotic cells. The CE GTase is recruited and activated by the Serine-5 phosphorylated carboxyl-terminal domain (CTD) of RNA polymerase II. Through the use of molecular dynamics simulations and enhanced sampling techniques, we provide a systematic and detailed characterization of the human CE-CTD interface, describing the effect of the CTD phosphorylation state, length and orientation on this interaction. Our computational analyses identify novel CTD interaction sites on the human CE GTase surface and quantify their relative contributions to CTD binding. We also identify, for the first time, allosteric connections between the CE GTase active site and the CTD binding sites, allowing us to propose a mechanism for allosteric activation. Through binding and activity assays we validate the novel CTD binding sites and show that the CDS2 site is essential for CE GTase activity stimulation. Comparison of the novel sites with cocrystal structures of the CE-CTD complex in different eukaryotic taxa reveals that this interface is considerably more conserved than previous structures have indicated.
Collapse
Affiliation(s)
- Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rajaei Almohammed
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Physics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
4
|
Blaustein M, Piegari E, Martínez Calejman C, Vila A, Amante A, Manese MV, Zeida A, Abrami L, Veggetti M, Guertin DA, van der Goot FG, Corvi MM, Colman-Lerner A. Akt Is S-Palmitoylated: A New Layer of Regulation for Akt. Front Cell Dev Biol 2021; 9:626404. [PMID: 33659252 PMCID: PMC7917195 DOI: 10.3389/fcell.2021.626404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The protein kinase Akt/PKB participates in a great variety of processes, including translation, cell proliferation and survival, as well as malignant transformation and viral infection. In the last few years, novel Akt posttranslational modifications have been found. However, how these modification patterns affect Akt subcellular localization, target specificity and, in general, function is not thoroughly understood. Here, we postulate and experimentally demonstrate by acyl-biotin exchange (ABE) assay and 3H-palmitate metabolic labeling that Akt is S-palmitoylated, a modification related to protein sorting throughout subcellular membranes. Mutating cysteine 344 into serine blocked Akt S-palmitoylation and diminished its phosphorylation at two key sites, T308 and T450. Particularly, we show that palmitoylation-deficient Akt increases its recruitment to cytoplasmic structures that colocalize with lysosomes, a process stimulated during autophagy. Finally, we found that cysteine 344 in Akt1 is important for proper its function, since Akt1-C344S was unable to support adipocyte cell differentiation in vitro. These results add an unexpected new layer to the already complex Akt molecular code, improving our understanding of cell decision-making mechanisms such as cell survival, differentiation and death.
Collapse
Affiliation(s)
- Matías Blaustein
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina.,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Estefanía Piegari
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina
| | - Camila Martínez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Antonella Vila
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina.,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Amante
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina.,Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Manese
- Laboratorio de bioquímica y biología celular de parásitos, Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - CONICET, Chascomús, Argentina
| | - Ari Zeida
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laurence Abrami
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mariela Veggetti
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, United States
| | - F Gisou van der Goot
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - María Martha Corvi
- Laboratorio de bioquímica y biología celular de parásitos, Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - CONICET, Chascomús, Argentina
| | - Alejandro Colman-Lerner
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Buenos Aires, Argentina
| |
Collapse
|
5
|
Uko NE, Güner OF, Matesic DF, Bowen JP. Akt Pathway Inhibitors. Curr Top Med Chem 2020; 20:883-900. [DOI: 10.2174/1568026620666200224101808] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Cancer is a devastating disease that has plagued humans from ancient times to this day. After
decades of slow research progress, promising drug development, and the identification of new targets,
the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling
pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease
in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have
been several promising drug candidates that have been studied, including but not limited to ipatasertib
(RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4;
which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative
activities against human cancer cells. For most of the compounds discussed in this review,
data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated
Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX-
0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development
and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with
ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK-
2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the
suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation.
The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin
derivatives have emerged through pharmacophore modeling, energy-based calculations, and
property predictions.
Collapse
Affiliation(s)
- Nne E. Uko
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Osman F. Güner
- Department of Chemistry and Physics, Santa Rosa Junior College, Santa Rosa, CA, United States
| | - Diane F. Matesic
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - J. Phillip Bowen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| |
Collapse
|
6
|
Bueren-Calabuig JA, G Bage M, Cowling VH, Pisliakov AV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res 2019; 47:8675-8692. [PMID: 31329932 PMCID: PMC7145595 DOI: 10.1093/nar/gkz613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
7
|
Li J, Wu G, Fu Q, Ge H, Liu S, Li X, Cheng B. Exploring the influence of conserved lysine69 on the catalytic activity of the helicobacter pylori shikimate dehydrogenase: A combined QM/MM and MD simulations. Comput Biol Chem 2019; 83:107098. [DOI: 10.1016/j.compbiolchem.2019.107098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022]
|
8
|
Li J, Fu Q, Liang Y, Cheng B, Li X. Microsecond molecular dynamics simulations and dynamic network analysis provide understanding of the allosteric inactivation of GSK3β induced by the L343R mutation. J Mol Model 2019; 25:111. [DOI: 10.1007/s00894-019-4003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
|
9
|
Liu L, Fan S, Li W, Tao W, Shi T, Zhao YL. Theoretical Investigation of the Structural Characteristics in the Active State of Akt1 Kinase. J Chem Inf Model 2019; 59:316-325. [PMID: 30571108 DOI: 10.1021/acs.jcim.8b00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Akt (known as protein kinase B or PKB) is a serine/threonine kinase that regulates multiple biological processes, including cell growth, survival, and differentiation. Akt plays a critical role in the intracellular signaling network through conformational changes responsive to diverse signal inputs, and dysregulation of Akt activity could give rise to a number of diseases. However, understanding of Akt's dynamic structures and conformational transitions between active and inactive states remains unclear. In this work, classical MD simulations and QM/MM calculations were carried out to unveil the structural characteristics of Akt1, especially in its active state. The doubly protonated H194 was investigated, and both ATP-Akt1 and ADP-Akt1 complexes were constructed to demonstrate the significance of ATP in maintaining the ATP-K179-E198 salt bridge and the corresponding allosteric pathway. Besides, conformational transitions from the inactive state to the active state showed different permeation patterns of water molecules in the ATP pocket. The coordination modes of Mg2+ in the dominant representative conformations ( I and I') are presented. Unlike the water-free conformation I', three water molecules appear around Mg2+ in the water-occupied conformation I, which can finally exert an influence on the catalytic mechanism of Akt1. Furthermore, QM/MM calculations were performed to study the phosphoryl-transfer reaction of Akt1. The transfer of ATP γ-phosphate was achieved through a reversible conformational change from the reactant to a critical prereaction state, with a water molecule moving into the reaction center to coordinate with Mg2+, after which the γ-phosphate group was transferred from ATP to the substrate. Taken together, our results elucidate the structural characteristics of the Akt1 active state and shed new light on the catalytic mechanism of Akt kinases.
Collapse
Affiliation(s)
- Lanxuan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Shuobing Fan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wenjuan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
10
|
Wang L, Zheng G, Liu X, Ni D, He X, Cheng J, Lu S. Molecular dynamics simulations provide insights into the origin of gleevec's selectivity toward human tyrosine kinases. J Biomol Struct Dyn 2018; 37:2733-2744. [PMID: 30052122 DOI: 10.1080/07391102.2018.1496139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein kinases are critical drug targets against cancer. Since the discovery of Gleevec, a specific inhibitor of Abl kinase, the capability of this drug to distinguish between Abl and other tyrosine kinases, such as Src, has been intensely investigated but the origin of Gleevec's selectivity to Abl against Src is less studied. Here, we performed molecular dynamics (MD) simulations, dynamical cross-correlation matrices (DCCM), dynamical network analysis, and binding free energy calculations to explore Gleevec's selectivity based on the crystal structures of Abl, Src, and their common ancestors (ANC-AS) and the two constructed mutation systems (AS→Abl and AS→Src). MD simulations revealed that the conformation of the phosphate-binding loop (P-loop) was altered significantly in the AS→Abl system. DCCM results unraveled that mutations increased anticorrelated motions in the AS→Abl system. Community network analysis suggested that the P-loop established special contacts in the AS→Abl system that are devoid in the AS→Src system. The binding free energy calculations unveiled that the affinity of Gleevec to AS→Abl increased to near the Abl level, whereas its affinity to AS→Src decreased to near the Src level. Analysis of individual residue contributions showed that the differences were located mainly at the P-loop. This study is valuable for understanding the sensitivity of Gleevec to human tyrosine kinases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lulu Wang
- a Department of Critical Care Medicine , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Guodong Zheng
- b Department of VIP clinic , Changhai Hospital, Naval Military Medical University , Shanghai , China
| | - Xianxian Liu
- c Department of Infectious Diseases , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Duan Ni
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Xinheng He
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Jinying Cheng
- c Department of Infectious Diseases , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Shaoyong Lu
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
11
|
Duan J, Hu C, Guo J, Guo L, Sun J, Zhao Z. A molecular dynamics study of the complete binding process of meropenem to New Delhi metallo-β-lactamase 1. Phys Chem Chem Phys 2018; 20:6409-6420. [PMID: 29442101 DOI: 10.1039/c7cp07459j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of substrate hydrolysis of New Delhi metallo-β-lactamase 1 (NDM-1) has been reported, but the process in which NDM-1 captures and transports the substrate into its active center remains unknown. In this study, we investigated the process of the substrate entry into the NDM-1 activity center through long unguided molecular dynamics simulations using meropenem as the substrate. A total of 550 individual simulations were performed, each of which for 200 ns, and 110 of them showed enzyme-substrate binding events. The results reveal three categories of relatively persistent and noteworthy enzyme-substrate binding configurations, which we call configurations A, B, and C. We performed binding free energy calculations of the enzyme-substrate complexes of different configurations using the molecular mechanics Poisson-Boltzmann surface area method. The role of each residue of the active site in binding the substrate was investigated using energy decomposition analysis. The simulated trajectories provide a continuous atomic-level view of the entire binding process, revealing potentially valuable regions where the enzyme and the substrate interact persistently and five possible pathways of the substrate entering into the active center, which were validated using well-tempered metadynamics. These findings provide important insights into the binding mechanism of meropenem to NDM-1, which may provide new prospects for the design of novel metallo-β-lactamase inhibitors and enzyme-resistant antibiotics.
Collapse
Affiliation(s)
- Juan Duan
- Department of Microbiology and Immunology of Guangdong Medical University, No. 2 West Wenming Road, Zhanjiang City, Guangdong Province 524023, China.
| | | | | | | | | | | |
Collapse
|