1
|
Klazas M, Naamneh MS, Zheng W, Lazarovici P. Gabapentin Increases Intra-Epidermal and Peptidergic Nerve Fibers Density and Alleviates Allodynia and Thermal Hyperalgesia in a Mouse Model of Acute Taxol-Induced Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10123190. [PMID: 36551946 PMCID: PMC9775678 DOI: 10.3390/biomedicines10123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The clinical pathology of Taxol-induced peripheral neuropathy (TIPN), characterized by loss of sensory sensitivity and pain, is mirrored in a preclinical pharmacological mice model in which Gabapentin, produced anti-thermal hyperalgesia and anti-allodynia effects. The study aimed to investigate the hypothesis that gabapentin may protect against Taxol-induced neuropathic pain in association with an effect on intra-epidermal nerve fibers density in the TIPN mice model. A TIPN study schedule was induced in mice by daily injection of Taxol during the first week of the experiment. Gabapentin therapy was performed during the 2nd and 3rd weeks. The neuropathic pain was evaluated during the whole experiment by the Von Frey, tail flick, and hot plate tests. Intra-epidermal nerve fibers (IENF) density in skin biopsies was measured at the end of the experiment by immunohistochemistry of ubiquitin carboxyl-terminal hydrolase PGP9.5 pan-neuronal and calcitonin gene-related (CGRP) peptides-I/II- peptidergic markers. Taxol-induced neuropathy was expressed by 80% and 73% reduction in the paw density of IENFs and CGPR, and gabapentin treatment corrected by 83% and 46% this reduction, respectively. Gabapentin-induced increase in the IENF and CGRP nerve fibers density, thus proposing these evaluations as an additional objective end-point tool in TIPN model studies using gabapentin as a reference compound.
Collapse
Affiliation(s)
- Michal Klazas
- Pharmacy Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Majdi Saleem Naamneh
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Philip Lazarovici
- Pharmacology Unit, School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112002, Israel
- Correspondence: ; Tel.: +972-2-6758729; Fax: +972-2-6757490
| |
Collapse
|
2
|
Zhang M, Hu M, Alles SRA, Montera MA, Adams I, Santi MD, Inoue K, Tu NH, Westlund KN, Ye Y. Peroxisome proliferator-activated receptor gamma agonist ELB00824 suppresses oxaliplatin-induced pain, neuronal hypersensitivity, and oxidative stress. Neuropharmacology 2022; 218:109233. [PMID: 36007855 DOI: 10.1016/j.neuropharm.2022.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a debilitating and difficult-to-treat side effect of chemotherapeutic drugs. CINP is marked with oxidative stress and neuronal hypersensitivities. The peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates genes involved in oxidative stress and inflammation. We hypothesize that PPARγ agonists are protective against CIPN by reducing oxidative stress and inhibiting neuronal hypersensitivities. To test our hypothesis, acute or chronic CIPN was introduced by short or long-term treatment of oxaliplatin in BALB/c mice. CIPN mice were treated with either a novel blood-brain barrier (BBB) penetrable PPARγ agonist ELB00824, or a BBB non-penetrable PPARγ agonist pioglitazone, or vehicle. Cold allodynia, mechanical allodynia, motor coordination, sedation and addiction were measured with dry ice, von Frey filaments, beam-walking tests, and conditioned place preference, respectively. Oxidative stress was accessed by measuring byproducts of protein oxidation (carbonyl and 3-Nitrotyrosine) and lipid peroxidation [Thiobarbituric acid reactive substances (TBARS)], as wells as gene expression of Cat, Sod2, Ppargc1a. The effects of ELB00824 on nociceptor excitability were measured using whole-cell electrophysiology of isolated dorsal root ganglion neurons. Preemptive ELB00824, but not pioglitazone, reduced oxaliplatin-induced cold and mechanical allodynia and oxidative stress. ELB0824 suppressed oxaliplatin-induced firing in IB4- neurons. ELB00824 did not cause motor discoordination or sedation/addiction or reduce the antineoplastic activity of oxaliplatin (measured with an MTS-based cell proliferation assay) in a human colon cancer cell line (HCT116) and a human oral cancer cell line (HSC-3). Our results demonstrated that ELB00824 prevents oxaliplatin-induced pain, likely via inhibiting neuronal hypersensitivities and oxidative stress.
Collapse
Affiliation(s)
- Morgan Zhang
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, 233W, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th street, New York, NY, 10010, USA; USA Elixiria Biotech Inc, Hartsdale, NY, 10530, USA; Shanghai Elixiria Biotech Co. Ltd, 578 Yingkou Road, Yangpu District, Shanghai, 200433, China
| | - Min Hu
- Shanghai Elixiria Biotech Co. Ltd, 578 Yingkou Road, Yangpu District, Shanghai, 200433, China
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, MSC10 6000, 2211 Lomas Blvd. NE, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Marena A Montera
- Department of Anesthesiology & Critical Care Medicine, MSC10 6000, 2211 Lomas Blvd. NE, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Ian Adams
- Department of Anesthesiology & Critical Care Medicine, MSC10 6000, 2211 Lomas Blvd. NE, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Maria D Santi
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, 233W, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th street, New York, NY, 10010, USA
| | - Kenji Inoue
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, 233W, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th street, New York, NY, 10010, USA
| | - Nguyen Huu Tu
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, 233W, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th street, New York, NY, 10010, USA
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, MSC10 6000, 2211 Lomas Blvd. NE, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Yi Ye
- Bluestone Center for Clinical Research, New York University College of Dentistry, 421 First Avenue, 233W, New York, NY, 10010, USA; Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th street, New York, NY, 10010, USA.
| |
Collapse
|
3
|
Haroun M, Petrou A, Tratrat C, Kositsi K, Gavalas A, Geronikaki A, Venugopala KN, Harsha NS. Discovery of benzothiazole-based thiazolidinones as potential anti-inflammatory agents: anti-inflammatory activity, soybean lipoxygenase inhibition effect and molecular docking studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:485-497. [PMID: 35703013 DOI: 10.1080/1062936x.2022.2084772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Despite the greatest achievement in the development of anti-inflammatory agents in the last two decades, the current clinical drugs suffer from a variety of complications in community settings and hospital. There is still an urgent need to design novel molecules with better safety profile and with different molecular targets from those in current clinical use. The aim of this research was to discover a series of benzothiazole-based thiazolidinones with lipoxygenase (LOX) inhibitory activity as a mechanism of anti-inflammatory action. Carrageenan-induced mouse foot paw oedema assay was carried out to determine the anti-inflammatory activity, while LOX inhibition was examined through the conversion of sodium linoleate to 13-hydroperoxylinoleic acid. Molecular docking studies were performed using AutoDock 4.2 software. The anti-inflammatory activity of the title compounds was determined in a range of 18.4%-69.57%, where compound #3 was found to be the most potent (69.57%) and also to be more active than the reference drug indomethacin (47%). Moreover, compound #3 showed the highest LOX inhibitory activity with IC50 of 13 μM being less potent to that of the reference NDGA (IC50 = 1.3 μM). Compound #3 has been identified as lead compound for further modification in an attempt to improve anti-inflammatory and LOX inhibitory activities.
Collapse
Affiliation(s)
- M Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - A Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - K Kositsi
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Gavalas
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - N S Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| |
Collapse
|
4
|
Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019; 160:688-701. [PMID: 30507781 DOI: 10.1097/j.pain.0000000000001448] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. Antihyperalgesic effects of pioglitazone were blocked by the PPARγ antagonist T0070907 (10 mg/kg, i.p.). We hypothesized that the ability of pioglitazone to reduce the accumulation of reactive oxygen species (ROS) in dorsal root ganglion (DRG) neurons contributed to its antihyperalgesic activity. Effects of cisplatin and pioglitazone on somatosensory neurons were studied on dissociated mouse DRG neurons after 24 hours in vitro. Incubation of DRG neurons with cisplatin (13 µM) for 24 hours increased the occurrence of depolarization-evoked calcium transients, and these were normalized by coincubation with pioglitazone (10 µM). Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
Collapse
|
5
|
Chou YJ, Chuu JJ, Peng YJ, Cheng YH, Chang CH, Chang CM, Liu HW. The potent anti-inflammatory effect of Guilu Erxian Glue extracts remedy joint pain and ameliorate the progression of osteoarthritis in mice. J Orthop Surg Res 2018; 13:259. [PMID: 30340603 PMCID: PMC6194592 DOI: 10.1186/s13018-018-0967-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a slow progressing, degenerative disorder of the synovial joints. Guilu Erxian Glue (GEG) is a multi-component Chinese herbal remedy with long-lasting favorable effects on several conditions, including articular pain and muscle strength in elderly men with knee osteoarthritis. The present study aimed to identify the effects of Guilu Erxian Paste (GE-P) and Liquid (GE-L) extracted from Guilu Erxian Glue in anterior cruciate ligament transection (ACLT)-induced osteoarthritis mice, and to compare the effectiveness of different preparations on knee cartilage degeneration during the progression of osteoarthritis. METHODS Male C57BL/6J mice underwent anterior cruciate ligament transection to induce mechanically destabilized osteoarthritis in the right knee. 4 weeks later, the mice were orally treated with PBS, celecoxib (10 mg/kg/day), Guilu Erxian Paste (100 or 300 mg/kg/day), and Guilu Erxian Liquid (100 or 300 mg/kg/day) for 28 consecutive days. Von Frey and open-field tests (OFT) were used to evaluate pain behaviors (mechanical hypersensitivity and locomotor performance). Narrowing of the joint space and osteophyte formation were examined radiographically. Inflammatory cytokine (IL-1β, IL-6, and TNF-α) levels in the articular cartilage were determined by quantitative real-time PCR. Histopathological examinations were conducted to evaluate the severity and extent of the cartilage lesions. RESULTS Guilu Erxian Paste and Guilu Erxian Liquid (300 mg/kg/day) were significantly more effective (p < 0.01) than celecoxib (10 mg/kg/day) in decreasing secondary allodynia when compared to the saline-treated group (#p < 0.05). Open-field tests revealed no significant motor dysfunction between the Guilu Erxian Paste- and Guilu Erxian Liquid-treated mice compared to the saline-treated mice. Radiographic findings also confirmed that the administration of Guilu Erxian Paste and Guilu Erxian Liquid (100 and 300 mg/kg/day) significantly and dose-dependently reduced osteolytic lesions and bone spur formation in the anterior cruciate ligament transection-induced osteoarthritis mice when compared to the saline-treated group. Notably, Guilu Erxian Liquid (100 mg/kg/day) treatment significantly reduced the mRNA levels of IL-1β, IL-6, and TNF-α as well as relative the protein expression of IL-1β and TNF-α to the effect of celecoxib. Guilu Erxian Paste and Guilu Erxian Liquid (300 mg/kg/day) markedly attenuated cartilage destruction, surface unevenness, proteoglycan loss, chondrocyte degeneration, and cartilage erosion in the superficial layers (##p < 0.01 and ###p < 0.001 respectively). CONCLUSIONS As expected, our findings suggest that the anti-inflammatory effects of Guilu Erxian Liquid (GE-L), following marked decrease on both IL-1β and TNF-α during the early course of post-traumatic osteoarthrosis (OA), may be of potential value in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yen-Jung Chou
- Department of Traditional Chinese Medicine, MacKay Memorial Hospital, Taipei City, Taiwan
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205 Taiwan
| | - Jiunn-Jye Chuu
- Department of Biotechnology, College of Engineering, Southern Taiwan University, Tainan City, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Hsuan Cheng
- Department of Biotechnology, College of Engineering, Southern Taiwan University, Tainan City, Taiwan
| | - Chin-Hsien Chang
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Tao-Yuan City, Taiwan
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City, 237 Taiwan
| | - Chieh-Min Chang
- Department of Traditional Chinese Medicine, En Chu Kong Hospital, New Taipei City, 237 Taiwan
| | - Hsia-Wei Liu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205 Taiwan
| |
Collapse
|
6
|
Okine BN, Gaspar JC, Finn DP. PPARs and pain. Br J Pharmacol 2018; 176:1421-1442. [PMID: 29679493 DOI: 10.1111/bph.14339] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is a common cause of disability worldwide and remains a global health and socio-economic challenge. Current analgesics are either ineffective in a significant proportion of patients with chronic pain or associated with significant adverse side effects. The PPARs, a family of nuclear hormone transcription factors, have emerged as important modulators of pain in preclinical studies and therefore a potential therapeutic target for the treatment of pain. Modulation of nociceptive processing by PPARs is likely to involve both transcription-dependent and transcription-independent mechanisms. This review presents a comprehensive overview of preclinical studies investigating the contribution of PPAR signalling to nociceptive processing in animal models of inflammatory and neuropathic pain. We examine current evidence from anatomical, molecular and pharmacological studies demonstrating a role for PPARs in pain control. We also discuss the limited evidence available from relevant clinical studies and identify areas that warrant further research. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|