1
|
Dehghankhold M, Ahmadi F, Nezafat N, Abedi M, Iranpour P, Dehghanian A, Koohi-Hosseinabadi O, Akbarizadeh AR, Sobhani Z. A versatile theranostic magnetic polydopamine iron oxide NIR laser-responsive nanosystem containing doxorubicin for chemo-photothermal therapy of melanoma. BIOMATERIALS ADVANCES 2024; 159:213797. [PMID: 38368693 DOI: 10.1016/j.bioadv.2024.213797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Theranostics nanoparticles (NPs) have recently received much attention in cancer imaging and treatment. This study aimed to develop a multifunctional nanosystem for the targeted delivery of photothermal and chemotherapy agents. Fe3O4 NPs were modified with polydopamine, bovine serum albumin, and loaded with DOX via a thermal-cleavable Azo linker (Fe3O4@PDA@BSA-DOX). The size of Fe3O4@PDA@BSA NPs was approximately 98 nm under the desired conditions. Because of the ability of Fe3O4 and PDA to convert light into heat, the temperature of Fe3O4@PDA@BSA NPs increased to approximately 47 °C within 10 min when exposed to an 808 nm NIR laser with a power density of 1.5 W/cm2. The heat generated by the NIR laser leads to the breaking of AZO linker and drug release. In vivo and in vitro results demonstrated that prepared NPs under laser irradiation successfully eradicated tumor cells without any significant toxicity effect. Moreover, the Fe3O4@PDA@BSA NPs exhibited the potential to function as a contrasting agent. These NPs could accumulate in tumors with the help of an external magnet, resulting in a significant enhancement in the quality of magnetic resonance imaging (MRI). The prepared novel multifunctional NPs seem to be an efficient system for imaging and combination therapy in melanoma.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Reza Akbarizadeh
- Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sobhani
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Raskolupova VI, Wang M, Dymova MA, Petrov GO, Shchudlo IM, Taskaev SY, Abramova TV, Godovikova TS, Silnikov VN, Popova TV. Design of the New Closo-Dodecarborate-Containing Gemcitabine Analogue for the Albumin-Based Theranostics Composition. Molecules 2023; 28:molecules28062672. [PMID: 36985644 PMCID: PMC10056911 DOI: 10.3390/molecules28062672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Combination therapy is becoming an increasingly important treatment strategy because multi-drugs can maximize therapeutic effect and overcome potential mechanisms of drug resistance. A new albumin-based theranostic containing gemcitabine closo-dodecaborate analogue has been developed for combining boron neutron capture therapy (BNCT) and chemotheraphy. An exo-heterocyclic amino group of gemcitabine was used to introduce closo-dodecaborate, and a 5′-hydroxy group was used to tether maleimide moiety through an acid-labile phosphamide linker. The N-trifluoroacylated homocysteine thiolactone was used to attach the gemcitabine analogue to human serum albumin (HSA) bearing Cy5 or Cy7 fluorescent dyes. The half-maximal inhibitory concentration (IC50) of the designed theranostic relative to T98G cells was 0.47 mM with the correlation coefficient R = 0.82. BNCT experiments resulted in a decrease in the viability of T98G cells, and the survival fraction was ≈ 0.4.
Collapse
Affiliation(s)
- Valeria I. Raskolupova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Meiling Wang
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Gleb O. Petrov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Ivan M. Shchudlo
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergey Yu. Taskaev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana V. Abramova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana S. Godovikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir N. Silnikov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana V. Popova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +8-383-3635183
| |
Collapse
|
3
|
The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol 2021; 187:24-34. [PMID: 34284054 DOI: 10.1016/j.ijbiomac.2021.07.080] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023]
Abstract
Human serum albumin (HSA)-based therapeutics have attracted tremendous attention in the development of anticancer agents. The versatile properties of HSA make HSA-based therapeutics possess improved pharmacokinetics, extended circulation half-life, enhanced efficacy, reduced toxicity, etc. Generally, the HSA-based therapeutics systems can be divided into four categories, i.e. HSA-drug nanoparticles, HSA-drug conjugates, HSA-binding prodrugs, and HSA-based recombinant fusion proteins: the latter mainly include antibody (domain)- and cytokine- fusion proteins. Advances in this area revealed the advantages of HSA-based systems in the development of tumor site-oriented therapeutics, partly referring to the enhanced penetration and retention (EPR) effect and the intensive macropinocytosis. Accordingly, a variety of technical platforms for the design and preparation of HSA-based therapeutics have been reported. Major strategies and directions for the drug development were discussed; those include (1) Tumor-site oriented drug delivery and enhanced drug retention, (2) Tumor-site prodrug release and activation, (3) Cancer cell bound intensive drug internalization, and (4) Tumor microenvironment (TME) directed immunomodulation. Notably, the multimodal HSA-based approach is promising for the development of tumor-oriented therapeutics for cancer therapy.
Collapse
|
4
|
Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2021; 26:3610. [PMID: 34204668 PMCID: PMC8231161 DOI: 10.3390/molecules26123610] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741099, China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| |
Collapse
|
5
|
Mohammadian M, Kouchakzadeh H, Rahmandoust M, Mohammadian T. Targeted albumin nanoparticles for the enhancement of gemcitabine toxicity on cancerous cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Abstract
Graphical Abstract [Formula: see text]
Collapse
|
7
|
Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS. A Dual Bioconjugated Virus-Like Nanoparticle as a Drug Delivery System and Comparison with a pH-Responsive Delivery System. NANOMATERIALS 2018; 8:nano8040236. [PMID: 29652827 PMCID: PMC5923566 DOI: 10.3390/nano8040236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
Modifications of virus-like nanoparticles (VLNPs) using chemical conjugation techniques have brought the field of virology closer to nanotechnology. The huge surface area to volume ratio of VLNPs permits multiple copies of a targeting ligand and drugs to be attached per nanoparticle. By exploring the chemistry of truncated hepatitis B core antigen (tHBcAg) VLNPs, doxorubicin (DOX) was coupled covalently to the external surface of these nanoparticles via carboxylate groups. About 1600 DOX molecules were conjugated on each tHBcAg VLNP. Then, folic acid (FA) was conjugated to lysine residues of tHBcAg VLNPs to target the nanoparticles to cancer cells over-expressing folic acid receptor (FR). The result demonstrated that the dual bioconjugated tHBcAg VLNPs increased the accumulation and uptake of DOX in the human cervical and colorectal cancer cell lines compared with free DOX, resulting in enhanced cytotoxicity of DOX towards these cells. The fabrication of these dual bioconjugated nanoparticles is simple, and drugs can be easily conjugated with a high coupling efficacy to the VLNPs without any limitation with respect to the cargo’s size or charge, as compared with the pH-responsive system based on tHBcAg VLNPs. These dual bioconjugated nanoparticles also have the potential to be modified for other combinatorial drug deliveries.
Collapse
Affiliation(s)
- Roya Biabanikhankahdani
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|