1
|
Venugopala KN, Kamat V. Pyrimidines: A New Versatile Molecule in the Drug Development Field, Scope, and Future Aspects. Pharmaceuticals (Basel) 2024; 17:1258. [PMID: 39458899 PMCID: PMC11510439 DOI: 10.3390/ph17101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrimidine is a moiety that occurs in living organisms and has a variety of significant biological properties in pharmacology. Due to the easy handling of synthesis, easily available precursor, and less duration for the reaction, for the synthesis, not many technical skills are needed. All these factors attract chemists to focus more on pyrimidines. Apart from the synthesis of biological applications of pyrimidines, medicinal chemists have gathered to explore more pyrimidine scaffolds due to their interesting medicinal properties and easy targeting of various binding sites. This review delves into the diverse biological activities of compounds derived from pyrimidine during the year 2024. We have attempted to explore the growing significance of pyrimidine derivatives and provide a new path for designing new potent molecules.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Vinuta Kamat
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangaluru 574 199, Karnataka, India
| |
Collapse
|
2
|
Duraisamy R, Al-Shar'i NA, Chandrashekharappa S, Deb PK, Gleiser RM, Tratrat C, Chopra D, Muthukurpalya Bhojegowd MR, Thirumalai D, Morsy MA, Ibrahim YF, Mohanlall V, Venugopala KN. Synthesis, biological evaluation, and computational investigation of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates as potential larvicidal agents against Anopheles arabiensis. J Biomol Struct Dyn 2024; 42:4016-4028. [PMID: 37259506 DOI: 10.1080/07391102.2023.2217929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Malaria is one of the most known vector-borne diseases caused by female Anopheles mosquito bites. According to WHO, about 247 million cases of malaria and 619,000 deaths were estimated worldwide in 2021, of which 95% of the cases and 96% of deaths occurred in the African region. Sadly, about 80% of all malaria deaths were of children under five years old. Despite the availability of different insecticides used to control this disease, the emergence of drug-resistant mosquitoes threatens public health. This, in turn, highlighted the need for new larvicidal agents that are effective at different larval life stages. This study aimed to identify novel larvicidal agents. To this end, a series of ethyl 2,4,6-trisubstituted-1,4-dihydropyrimidine-5-carboxylates 8a-i was synthesized using a three-step chemical synthetic approach via a Biginelli reaction employed as a key step. All title compounds were screened against Anopheles arabiensis to determine their larvicidal activities. Among them, two derivatives, ethyl 2-((4-bromophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8b and ethyl 2-((4-bromo-2-cyanophenyl)amino)-4-(4-fluorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 8f, showed the highest larvicidal activity, with mortality of 94% and 91%, respectively, and emerged as potential larvicidal agents. In addition, computational studies, including molecular docking and molecular dynamics simulations, were carried out to investigate their mechanism of action. The computational results showed that acetylcholinesterase appears to be a plausible molecular target for their larvicidal property.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramasamy Duraisamy
- Organic Synthesis and Nano-Bio Laboratory, Department of Chemistry, Thiruvalluvar University, Vellore, India
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R) Raebareli, Lucknow, UP, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Raquel M Gleiser
- CREAN-IMBIV (CONICET-UNC), Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | | | - Dhakshanamurthy Thirumalai
- Organic Synthesis and Nano-Bio Laboratory, Department of Chemistry, Thiruvalluvar University, Vellore, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Yasmine F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Rostami N, Dekamin MG, Valiey E, FaniMoghadam H. l-Asparagine-EDTA-amide silica-coated MNPs: a highly efficient and nano-ordered multifunctional core-shell organocatalyst for green synthesis of 3,4-dihydropyrimidin-2(1 H)-one compounds. RSC Adv 2022; 12:21742-21759. [PMID: 36091190 PMCID: PMC9386691 DOI: 10.1039/d2ra02935a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, new l-asparagine grafted on 3-aminopropyl-modified Fe3O4@SiO2 core-shell magnetic nanoparticles using the EDTA linker (Fe3O4@SiO2-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components. Moreover, the environmental-friendliness and nontoxic nature of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from the reaction mixture and short reaction time are some of the remarkable advantages of this green protocol.
Collapse
Affiliation(s)
- Negin Rostami
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Mohammad G Dekamin
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Ehsan Valiey
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Hamidreza FaniMoghadam
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| |
Collapse
|
4
|
1,2,3-Triazolyl-tetrahydropyrimidine Conjugates as Potential Sterol Carrier Protein-2 Inhibitors: Larvicidal Activity against the Malaria Vector Anopheles arabiensis and In Silico Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092676. [PMID: 35566029 PMCID: PMC9102322 DOI: 10.3390/molecules27092676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.
Collapse
|
5
|
Bairagi KM, Ingle KS, Bhowal R, Mohurle SA, Hasija A, Alwassil OI, Venugopala KN, Chopra D, Nayak SK. Interplay of Halogen and Hydrogen Bonding through Co-Crystallization in Pharmacologically Active Dihydropyrimidines: Insights from Crystal Structure and Energy Framework. Chempluschem 2021; 86:1167-1176. [PMID: 34409757 DOI: 10.1002/cplu.202100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Indexed: 11/05/2022]
Abstract
A solvent-assisted grinding method has been used to prepare co-crystals in substituted dihydropyrimidines (DHPM) that constitutes pharmacologically active compounds. These were characterized using FT-IR, PXRD, and single-crystal X-ray diffraction. In order to explore the possibility of formation of halogen (XB) and hydrogen bonding (HB) synthons in the solid state, co-crystallization attempts of differently substituted DHPM molecules, containing nitro, hydoxy, and chloro substituents, with different co-formers, such as 1,4-diiodo tetrafluorobenzene (1,4 DITFB) and 3-nitrobenzoic acid (3 NBA) were performed. The XB co-crystals (C2aXB, C2bXB, and C2cXB) prefer the formation of C-I⋅⋅⋅O/C-I⋅⋅⋅S XB synthon, whereas the HB co-crystal (C2dHB) is stabilized by N-H⋅⋅⋅O H-bond formation. Hirshfeld surface analysis revealed that the percentage contribution of intermolecular interactions for XB co-crystals prefer equal contribution of XB synthon along with HB synthon. Furthermore, the interaction energy was analyzed using energy frameworks, which suggests that their stability, a combination of electrostatics and dispersion, is enhanced through XB/HB in comparison to the parent DHPMs.
Collapse
Affiliation(s)
- Keshab M Bairagi
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| | - Kapil S Ingle
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| | - Rohit Bhowal
- Department of Chemistry, Institution Indian Institute of Science Education and Research Bhopal Address Bhopal, Bhauri, Bhopal 462023, India
| | - Smital A Mohurle
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| | - Avantika Hasija
- Department of Chemistry, Institution Indian Institute of Science Education and Research Bhopal Address Bhopal, Bhauri, Bhopal 462023, India
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, King Saud bin Abdulaziz University for health sciences, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Durban, 4001, South Africa.,Department of Pharmaceutical Sciences College of Clinical Pharmacy King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, Durban, 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Institution Indian Institute of Science Education and Research Bhopal Address Bhopal, Bhauri, Bhopal 462023, India
| | - Susanta K Nayak
- Department of Chemistry, Institution Visvesvaraya National Institute of Technology, Nagpur Address Nagpur, 440010, Maharashtra, India
| |
Collapse
|
6
|
Venugopala KN, Deb PK, Pillay M, Chopra D, Chandrashekharappa S, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Kandeel M, Venugopala R, Mohanlall V. 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study. Curr Top Med Chem 2021; 21:295-306. [PMID: 33138763 DOI: 10.2174/1568026620666201102121606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | | | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
7
|
Bairagi KM, Younis NS, Emeka PM, Sangtani E, Gonnade RG, Venugopala KN, Alwassil OI, Khalil HE, Nayak SK. Antidiabetic Activity of Dihydropyrimidine Scaffolds and Structural Insight by Single Crystal X-ray Studies. Med Chem 2021; 16:996-1003. [PMID: 31880253 DOI: 10.2174/1573406416666191227123048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/25/2019] [Accepted: 10/10/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND This research project is designed to identify the anti-diabetic effects of the newly synthesized compounds to conclude the perspective of consuming one or more of these new synthetic compounds for diabetes management. INTRODUCTION A series of dihydropyrimidine (DHPM) derivative bearing electron releasing and electron-withdrawing substituent's on phenyl ring (a-j) were synthesized and screened for antihyperglycemic( anti-diabetic) activity on streptozotocin (STZ) induced diabetic rat model. The newly synthesized compounds were characterized by using FT-IR, melting point, 1H and 13C NMR analysis. The crystal structure and supramolecular features were analyzed through single-crystal X-ray study. Anti-diabetic activity testing of newly prepared DHPM scaffolds was mainly based on their relative substituent on the phenyl ring along with urea and thiourea. Among the synthesized DHPM scaffold, the test compound c having chlorine group on phenyl ring at the ortho position to the hydropyrimidine ring with urea and methyl acetoacetate derivative shows moderate lowering of glucose level. However, the title compounds methyl 4-(4-hydroxy-3-methoxyphenyl)- 6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(g) and ethyl 4-(3-ethoxy-4- hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(h) having methoxy and ethoxy substituents on phenyl ring show significant hypoglycemic activity compared to the remaining compounds from the Scheme 1. METHODS The experimental rat models for the study were divided into 13 groups (n = 10); group 1 animals were treated with 0.5% CMC (0.5mL) (vehicle); group 2 were considered the streptozotocin (STZ)/nicotinamide diabetic control group (DC) and untreated, group 3 diabetic animals were administered with gliclazide 50 mg/kg and act as a reference drug group. The remaining groups of the diabetic animals were administered with the newly synthesized dihydropyrimidine compounds in a single dose of 50 mg/kg orally using the oral gavage, daily for 7 days continuously. The blood glucose level was measured before and 72 hrs after nicotinamide-STZ injection, for confirmation of hyperglycemia and type 2 diabetes development. RESULTS Blood glucose levels were significantly (p<0.05) reduced after treatment with these derivatives. The mean percentage reduction for gliclazide was 50%, while that of synthesized compounds were approximately 36%. CONCLUSION Our result suggests that the synthesized new DHPM derivative containing alkoxy group on the phenyl ring shows a significant lowering of glucose level compared to other derivatives.
Collapse
Affiliation(s)
- Keshab M Bairagi
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia,Department of Pharmacology, Zagazig University, Zagazig 44519, Egypt
| | - Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Ekta Sangtani
- Center for Materials Characterisation, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune 411 008, India
| | - Rajesh G Gonnade
- Center for Materials Characterisation, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune 411 008, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia,Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hany E Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia,Department of Pharmacognosy, Faculty of Pharmacy, Minia University; Minia, 61519, Egypt
| | - Susanta K Nayak
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| |
Collapse
|
8
|
Chemistry, anti-diabetic activity and structural analysis of substituted dihydropyrimidine analogues. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
P N, Prasad Dasappa J, B H, Chopra D, Venugopala KN, Deb PK, Gleiser RM, Mohanlall V, Maharaj R, S S, Poojary V. Synthesis, characterization and larvicidal activity of novel benzylidene derivatives of fenobam and its thio analogues with crystal insight. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Synthesis of 6-unsubstituted 2-oxo, 2-thioxo, and 2-amino-3,4-dihydropyrimidines and their antiproliferative effect on HL-60 cells. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Venugopala KN, Ramachandra P, Tratrat C, Gleiser RM, Bhandary S, Chopra D, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Venugopala R, Deb PK, Chandrashekharappa S, Khalil HE, Alwassil OI, Abed SN, Bataineh YA, Palenge R, Haroun M, Pottathil S, Girish MB, Akrawi SH, Mohanlall V. Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against Malaria Vector Anopheles arabiensis, In Silico ADMET Prediction and Molecular Target Investigation. Molecules 2020; 25:molecules25061316. [PMID: 32183140 PMCID: PMC7144721 DOI: 10.3390/molecules25061316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence:
| | - Pushpalatha Ramachandra
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Raquel M. Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaíso s.n., Córdoba, Argentina and FCEFyN, AV. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba 5000, Argentina;
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560 065, India;
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Sara Nidal Abed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Ramachandra Palenge
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Meravanige B. Girish
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| |
Collapse
|
12
|
Venugopala KN, Tratrat C, Pillay M, Chandrashekharappa S, Al-Attraqchi OHA, Aldhubiab BE, Attimarad M, Alwassil OI, Nair AB, Sreeharsha N, Venugopala R, Morsy MA, Haroun M, Kumalo HM, Odhav B, Mlisana K. In silico Design and Synthesis of Tetrahydropyrimidinones and Tetrahydropyrimidinethiones as Potential Thymidylate Kinase Inhibitors Exerting Anti-TB Activity Against Mycobacterium tuberculosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1027-1039. [PMID: 32214795 PMCID: PMC7082623 DOI: 10.2147/dddt.s228381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Abstract
Background and Purpose Tuberculosis has been reported to be the worldwide leading cause of death resulting from a sole infectious agent. The emergence of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has made the battle against the infection more difficult since most currently available therapeutic options are ineffective against these resistant strains. Therefore, novel molecules need to be developed to effectively treat tuberculosis disease. Preliminary docking studies revealed that tetrahydropyrimidinone derivatives have favorable interactions with the thymidylate kinase receptor. In the present investigation, we report the synthesis and the mycobacterial activity of several pyrimidinones and pyrimidinethiones as potential thymidylate kinase inhibitors. Methods The title compounds (1a-d) and (2a-b) were synthesized by a one-pot three-component Biginelli reaction. They were subsequently characterized and used for whole-cell anti-TB screening against H37Rv and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by the resazurin microplate assay (REMA) plate method. Molecular modeling was conducted using the Accelry's Discovery Studio 4.0 client program to explain the observed bioactivity of the compounds. The pharmacokinetic properties of the synthesized compounds were predicted and analyzed. Results Of the compounds tested for anti-TB activity, pyrimidinone 1a and pyrimidinethione 2a displayed moderate activity against susceptible MTB H37Rv strains at 16 and 32 µg/mL, respectively. Only compound 2a was observed to exert modest activity at 128 µg/mL against MTB strains with cross-resistance to rifampicin and isoniazid. The presence of the trifluoromethyl group was essential to retain the inhibitory activity of compounds 1a and 2a. Molecular modeling studies of these compounds against thymidylate kinase targets demonstrated a positive correlation between the bioactivity and structure of the compounds. The in-silico ADME (absorption, distribution, metabolism, and excretion) prediction indicated favorable pharmacokinetic and drug-like properties for most compounds. Conclusion Pyrimidinone 1a and pyrimidinethione 2a were identified as the leading compounds and can serve as a starting point to develop novel anti-TB therapeutic agents.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | | | | | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Osama I Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Hezekiel M Kumalo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Medical School, Durban 4001, South Africa
| | - Bharti Odhav
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Koleka Mlisana
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| |
Collapse
|