1
|
Chi Y, Peng Y, Zhang S, Tang S, Zhang W, Dai C, Ji S. A Rapid In Vivo Toxicity Assessment Method for Antimicrobial Peptides. TOXICS 2024; 12:387. [PMID: 38922067 PMCID: PMC11209610 DOI: 10.3390/toxics12060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Antimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide of LL-37, which has perfect amphipathicity and a higher hydrophobicity, resulting in higher haemolytic activity. However, there is no significant difference in the cytotoxicity against human lung epithelial cells between the GF-17 and LL-37 groups, indicating that there are significant differences in the sensitivity of different human cells to GF-17. In this study, LL-37 and GF-17 were administered to mouse lungs via intranasal inoculation. Blood routine examination results showed that LL-37 did not affect the red blood cells, platelet, white blood cells and neutrophil counts, but GF-17 decreased the white blood cells and neutrophil counts with the increasing concentration of peptides. GF-17-treated mice suffer a body weight loss of about 2.3 g on average in 24 h, indicating that GF-17 is highly toxic to mice. The total cell counts in the bronchoalveolar lavage fluid from GF-17-treated mice were 4.66-fold that in the untreated group, suggesting that GF-17 treatment leads to inflammation in the lungs of mice. Similarly, the histological results showed the infiltration of neutrophils in the lungs of GF-17-treated mice. The results suggest that the administration of GF-17 in the lungs of mice does not affect the red blood cells and platelet counts in the blood but promotes neutrophil infiltration in the lungs, leading to an inflammatory response. Therefore, we established a mouse acute lung injury model to preliminarily evaluate the in vivo toxicity of AMPs. For AMPs with a clinical application value, systematic research is still needed to evaluate their acute and long-term toxicity.
Collapse
Affiliation(s)
- Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Yunhui Peng
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Shikun Zhang
- Academy of Military Medical Sciences, Beijing 100850, China;
| | - Sijia Tang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Wenzhou Zhang
- School of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China
| | - Congjie Dai
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| |
Collapse
|
2
|
Conlon JM, Hunter L, Attoub S, Casciaro B, Mechkarska M, Abdel-Wahab YHA. Antimicrobial, cytotoxic, and insulin-releasing activities of the amphibian host-defense peptide ocellatin-3N and its L-lysine-substituted analogs. J Pept Sci 2023; 29:e3463. [PMID: 36426386 DOI: 10.1002/psc.3463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
The host-defense peptide ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2 ), first isolated from the Caribbean frog Leptodactylus nesiotus, inhibited growth of clinically relevant Gram-positive and Gram-negative bacteria as well as a strain of the major emerging yeast pathogen Candida parapsilosis. Increasing cationicity while maintaining amphipathicity by the substitution Asp4 →Lys increased potency against the microorganisms by between 4- and 16-fold (MIC ≤3 μM) compared with the naturally occurring peptide. The substitution Ala18 →Lys and the double substitution Asp4 →Lys and Ala18 →Lys had less effects on potency. The [D4K] analog also showed 2.5- to 4-fold greater cytotoxic potency against non-small-cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells (LC50 values in the range of 12-20 μM) compared with ocellatin-3N but was less hemolytic to mouse erythrocytes. However, the peptide showed no selectivity for tumor-derived cells [LC50 = 20 μM for human umbilical vein endothelial cells (HUVECs)]. Ocellatin-3N and [D4K]ocellatin-3N stimulated the release of insulin from BRIN-BD11 clonal β-cells at concentrations ≥1 nM, and [A18K]ocellatin-3N, at concentrations ≥0.1 nM. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM, indicating that plasma membrane integrity had been preserved. The three peptides produced an increase in intracellular [Ca2+ ] in BRIN-BD11 cells when incubated at a concentration of 1 μM. In view of its high insulinotropic potency and relatively low hemolytic activity, the [A18K] ocellatin analog may represent a template for the design of agents with therapeutic potential for the treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Lauren Hunter
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Milena Mechkarska
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Yasser H A Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
3
|
Lin Y, Jiang Y, Zhao Z, Lu Y, Xi X, Ma C, Chen X, Zhou M, Chen T, Shaw C, Wang L. Discovery of a Novel Antimicrobial Peptide, Temporin-PKE, from the Skin Secretion of Pelophylax kl. esculentus, and Evaluation of Its Structure-Activity Relationships. Biomolecules 2022; 12:biom12060759. [PMID: 35740884 PMCID: PMC9221509 DOI: 10.3390/biom12060759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial resistance against antibiotics has led to increasing numbers of treatment failures, and AMPs are widely accepted as becoming potential alternatives due to their advantages. Temporin-PKE is a novel peptide extracted from the skin secretion of Pelophylax kl. esculentus and it displays a strong activity against Gram-positive bacteria, with an extreme cytotoxicity. Incorporating positively charged residues and introducing D-amino acids were the two main strategies adopted for the modifications. The transformation of the chirality of Ile could reduce haemolytic activity, and an analogue with appropriate D-isoforms could maintain antimicrobial activity and stability. The substitution of hydrophobic residues could bring about more potent and broad-spectrum antimicrobial activities. The analogues with Lys were less harmful to the normal cells and their stabilities remained at similarly high levels compared to temporin-PKE. The optimal number of charges was three, and the replacement on the polar face was a better choice. Temporin-PKE-3K exerted dually efficient functions includingstrong antimicrobial and anticancer activity. This analogue showed a reduced possibility for inducing resistance in MRSA and Klebsiella pneumoniae, a rather strong antimicrobial activity in vivo, and it exhibited the highest therapeutic index such that temporin-PKE-3K has the potential to be developed as a clinical drug.
Collapse
Affiliation(s)
- Yaxian Lin
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Yangyang Jiang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Ziwei Zhao
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueyang Lu
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
- Correspondence: (X.C.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
- Correspondence: (X.C.); (L.W.)
| |
Collapse
|
4
|
Liu Y, Shi D, Wang J, Chen X, Zhou M, Xi X, Cheng J, Ma C, Chen T, Shaw C, Wang L. A Novel Amphibian Antimicrobial Peptide, Phylloseptin-PV1, Exhibits Effective Anti- staphylococcal Activity Without Inducing Either Hepatic or Renal Toxicity in Mice. Front Microbiol 2020; 11:565158. [PMID: 33193152 PMCID: PMC7649123 DOI: 10.3389/fmicb.2020.565158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 01/26/2023] Open
Abstract
In order to part address the problem of drug-resistant pathogens, antimicrobial peptides (AMPs) have been proposed as alternatives to traditional antibiotics. Herein, a novel phylloseptin peptide, named phylloseptin-PV1 (PPV1), is described from the defensive skin secretion of the Neotropical white-lined leaf frog, Phyllomedusa vaillantii. The peptide was synthesized by solid phase peptide synthesis (SPPS) and purified by RP-HPLC, prior to assessment of its biological activities. PPV1 not only demonstrated potent antimicrobial activity against planktonic ESKAPE microorganisms and the yeast, Candida albicans, but also inhibited and eradicated Staphylococcus aureus and MRSA biofilms. The antimicrobial mechanism was shown to include permeabilization of target cell membranes. The in vivo antimicrobial activity of the peptide was then evaluated using mice. PPV1 also exhibited antiproliferative activity against the cancer cell lines, H157, MCF-7, and U251MG, but had a lower potency against the normal cell line, HMEC-1. Although, the peptide possessed a moderate hemolytic action on mammalian red blood cells in vitro, it did not induce significant hepatic or renal toxicity in injected infected mice. These studies have thus found PPV1 to be a potent phylloseptin group AMP, which can effectively inhibit staphylococci, both in vitro and in vivo, without eliciting toxicity. These data thus provide support for further evaluation of PPV1 as a novel antimicrobial agent with therapeutic potential.
Collapse
Affiliation(s)
- Yue Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Daning Shi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.,School of Government, Peking University, Beijing, China
| | - Jin Wang
- Department of Chinese Medicine, Pizhou People's Hospital, Pizhou, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Gaiser RA, Ayerra Mangado J, Mechkarska M, Kaman WE, van Baarlen P, Conlon JM, Wells JM. Selection of antimicrobial frog peptides and temporin-1DRa analogues for treatment of bacterial infections based on their cytotoxicity and differential activity against pathogens. Chem Biol Drug Des 2020; 96:1103-1113. [PMID: 31102497 PMCID: PMC7891380 DOI: 10.1111/cbdd.13569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 01/02/2023]
Abstract
Cationic, amphipathic, α-helical host-defense peptides (HDPs) that are naturally secreted by certain species of frogs (Anura) possess potent broad-spectrum antimicrobial activity and show therapeutic potential as alternatives to treat infections by multidrug-resistant pathogens. Fourteen amphibian skin peptides and twelve analogues of temporin-1DRa were studied for their antimicrobial activities against clinically relevant human or animal skin infection-associated pathogens. For comparison, antimicrobial potencies of frog skin peptides against a range of probiotic lactobacilli were determined. We used the VITEK 2 system to define a profile of antibiotic susceptibility for the bacterial panel. The minimal inhibitory concentration (MIC) values of the naturally occurring temporin-1DRa, CPF-AM1, alyteserin-1c, hymenochirin-2B, and hymenochirin-4B for pathogenic bacteria were threefold to ninefold lower than the values for the tested probiotic strains. Similarly, temporin-1DRa and its [Lys4 ], [Lys5 ], and [Aib8 ] analogues showed fivefold to 6.5-fold greater potency against the pathogens. In the case of PGLa-AM1, XT-7, temporin-1DRa and its [D-Lys8 ] and [Aib13 ] analogues, no apoptosis or necrosis was detected in human peripheral blood mononuclear cells at concentrations below or above the MIC. Given the differential activity against commensal bacteria and pathogens, some of these peptides are promising candidates for further development into therapeutics for topical treatment of skin infections.
Collapse
Affiliation(s)
- Rogier A Gaiser
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - Jaione Ayerra Mangado
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Wendy E Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (EMC), Rotterdam, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| | - J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Romero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) 2019; 21:309-322. [PMID: 31804896 DOI: 10.1089/sur.2019.266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small and mostly polycationic molecules that form part of the innate immune response. There are currently more than 3000 experimentally reported AMPs. Particularly in frogs, the temporin family has been discovered as potential AMPs. The aim of this work is to review the latest publications about this class of peptides, discuss their properties, and present an update of the last studies and new discoveries in the field. More than 130 temporins have been identified in this family. The most studied temporins are temporin A (TA), temporin B (TB), and temporin L (TL). These peptides showed antimicrobial activity against gram-negative, gram-positive bacteria and fungi. Since the discovery of temporins in 1996, several groups of researchers isolated different peptides from various species of frogs that were included as members of this family. Although antimicrobial activity of many temporins has not been analyzed yet, most of them showed antimicrobial and antifungal activities. A combination of nanotechnology and AMPs for temporins in different antimicrobial treatments could be a promising alternative for resistant pathogens. These studies demonstrate that, even with the advancement in scientific research on the composition and antimicrobial activity of temporins, further studies are necessary to wholly understand their components and mechanisms of action.
Collapse
Affiliation(s)
- Stella Maris Romero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina
| | - Alejandra Beatriz Cardillo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - María Camila Martínez Ceron
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvana Laura Giudicessi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
7
|
Conlon JM, Mechkarska M, Leprince J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev Proteomics 2019; 16:897-908. [DOI: 10.1080/14789450.2019.1693894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Michael Conlon
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom of Great Britain and Northern Ireland
| | - Milena Mechkarska
- Department of Life Sciences, University of the West Indies at Saint Augustine, Saint Augustine, Trinidad and Tobago
| | - Jérôme Leprince
- Equipe Facteurs Neurotrophiques et Différenciation Neuronale, Universite de Rouen, Mont-Saint-Aignan, France
| |
Collapse
|