1
|
Guo R, Yu J, Guo Z. Virtual Screening and Binding Analysis of Potential CD58 Inhibitors in Colorectal Cancer (CRC). Molecules 2023; 28:6819. [PMID: 37836662 PMCID: PMC10574072 DOI: 10.3390/molecules28196819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Human cell surface receptor CD58, also known as lymphocyte function-associated antigen 3 (LFA-3), plays a critical role in the early stages of immune response through interacting with CD2. Recent research identified CD58 as a surface marker of colorectal cancer (CRC), which can upregulate the Wnt pathway and promote self-renewal of colorectal tumor-initiating cells (CT-ICs) by degradation of Dickkopf 3. In addition, it was also shown that knockdown of CD58 significantly impaired tumor growth. In this study, we developed a structure-based virtual screening pipeline using Autodock Vina and binding analysis and identified a group of small molecular compounds having the potential to bind with CD58. Five of them significantly inhibited the growth of the SW620 cell line in the following in vitro studies. Their proposed binding models were further verified by molecular dynamics (MD) simulations, and some pharmaceutically relevant chemical and physical properties were predicted. The hits described in this work may be considered interesting leads or structures for the development of new and more efficient CD58 inhibitors.
Collapse
Affiliation(s)
- Rong Guo
- Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Jiangnan Yu
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518054, China
| | - Zhikun Guo
- International Cancer Center, Shenzhen University Medical School, Shenzhen 518054, China
| |
Collapse
|
2
|
Dahal A, Subramanian V, Shrestha P, Liu D, Gauthier T, Jois S. Conformationally constrained cyclic grafted peptidomimetics targeting protein-protein interactions. Pept Sci (Hoboken) 2023; 115:e24328. [PMID: 38188985 PMCID: PMC10769001 DOI: 10.1002/pep2.24328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/03/2023] [Indexed: 01/09/2024]
Abstract
Sunflower trypsin inhibitor-1 (SFTI-1) structure is used for designing grafted peptides as a possible therapeutic agent. The grafted peptide exhibits multiple conformations in solution due to the presence of proline in the structure of the peptide. To lock the grafted peptide into a major conformation in solution, a dibenzofuran moiety (DBF) was incorporated in the peptide backbone structure, replacing the Pro-Pro sequence. NMR studies indicated a major conformation of the grafted peptide in solution. Detailed structural studies suggested that SFTI-DBF adopts a twisted beta-strand structure in solution. The surface plasmon resonance analysis showed that SFTI-DBF binds to CD58 protein. A model for the protein-SFTI-DBF complex was proposed based on docking studies. These studies suggested that SFTI-1 grafted peptide can be used to design stable peptides for therapeutic purposes by grafting organic functional groups and amino acids. However, when a similar strategy was used with another grafted peptide, the resulting peptide did not produce a single major conformation, and its biological activity was lost. Thus, conformational constraints depend on the sequence of amino acids used for SFTI-1 grafting.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
| | - Vivekanandan Subramanian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| | - Dong Liu
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Ted Gauthier
- AgCenter Biotechnology Laboratory, LSU Agricultural Center, Baton Rouge, LA, 70803
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA 71201
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803
| |
Collapse
|
3
|
Dahal A, Parajuli P, Singh SS, Shrestha L, Sonju JJ, Shrestha P, Chatzistamou I, Jois S. Targeting protein–protein interaction for immunomodulation: A sunflower trypsin inhibitor analog peptidomimetic suppresses RA progression in CIA model. J Pharmacol Sci 2022; 149:124-138. [PMID: 35641025 PMCID: PMC9208026 DOI: 10.1016/j.jphs.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Protein–protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology (PMI), School of Medicine, USC, SC 6439 Garners Ferry Rd, Columbia, SC, 29208, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA.
| |
Collapse
|
4
|
Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Peptides and peptidomimetics as therapeutic agents for Covid-19. Pept Sci (Hoboken) 2022; 114:e24245. [PMID: 34901700 PMCID: PMC8646791 DOI: 10.1002/pep2.24245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Covid-19 pandemic has caused high morbidity and mortality rates worldwide. Virus entry into cells can be blocked using several strategies, including inhibition of protein-protein interactions (PPIs) between the viral spike glycoprotein and cellular receptors, as well as blocking of spike protein conformational changes that are required for cleavage/activation and fusogenicity. The spike-mediated viral attachment and entry into cells via fusion of the viral envelope with cellular membranes involve PPIs mediated by short peptide fragments exhibiting particular secondary structures. Thus, peptides that can inhibit these PPIs may be used as potential antiviral agents preventing virus entry and spread. This review is focused on peptides and peptidomimetics as PPI modulators and protease inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeLouisianaUSA
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeLouisianaUSA
| |
Collapse
|