1
|
Chen H, Lyu F, Gao X. Advances in ferroptosis for castration-resistant prostate cancer treatment: novel drug targets and combination therapy strategies. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00933-w. [PMID: 39733054 DOI: 10.1038/s41391-024-00933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC). SUBJECTS To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics. We then pay attention to ferroptosis effects on CRPC, and the relationship between ferroptosis and CRPC treatment. Finally, we'd like to figure out if ferroptosis could predict the prognosis of CRPC thus screening early for populations that may benefit from appropriate therapies. RESULTS The review demonstrated that ferroptosis regulators like PI3K/AKT/mTOR, DECR1 et al., have a significant role in the development of CRPC and that several inducers of ferroptosis, such as erastin, BSO, RSL3, and FIN56, have already demonstrated their effects in that area. What's more, ferroptosis is crucial for radiation-induced anticancer effects by inducing lipid peroxidation and regulating p53, AMPK, and others. Additionally, it has been discovered that certain GPX4 and SLC7A11 inhibitors can increase radiosensitivity, which brings new combination strategies. Finally, among the genes associated with ferroptosis, which may be excellent predictors of prostate cancer prognosis, several risk models have been developed and shown promising predictive capabilities. CONCLUSIONS Ferroptosis can serve as a potential therapeutic target for CRPC, and could be a new strategy for combination therapy. Moreover, ferroptosis-related genes may be great indicators of PCa prognosis. Further research on ferroptosis in CRPC therapy can benefit from the frameworks provided by this review.
Collapse
Affiliation(s)
- Huizhu Chen
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Xianshu Gao
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
2
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Na X, Li L, Liu D, He J, Zhang L, Zhou Y. Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep 2024; 52:123. [PMID: 39054952 PMCID: PMC11292301 DOI: 10.3892/or.2024.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Ferroptosis inducers (FIN) have a key role in cancer therapy and provide novel and innovative treatment strategies. Although many researchers have performed FIN screening of synthetic compounds, studies on the identification of FIN from natural products are limited, particularly in the field of drug development and combination therapy. In this review, this gap was addressed by comprehensively summarizing recent studies on ferroptosis. The causes of ferroptosis were categorized into driving and defensive factors, elucidating key pathways and targets. Next, through summarizing research on natural products that induce ferroptosis, the study elaborated in detail on the natural products that have FIN functions. Their discovery and development were also described and insight for clinical drug development was provided. In addition, the mechanisms of action were analyzed and potential combination therapies, resistance reversal and structural enhancements were presented. By highlighting the potential of natural products in inducing ferroptosis for cancer treatment, this review may serve as a reference for utilizing these compounds against cancer. It not only showed the significance of natural products but may also promote further investigation into their therapeutic effects, thus encouraging research in this field.
Collapse
Affiliation(s)
- Xin Na
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lin Li
- Yunnan Cancer Hospital (Third Affiliated Hospital of Kunming Medical University), Kunming, Yunnan 650118, P.R. China
| | - Dongmei Liu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaqi He
- The First Clinical Medical College of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ling Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yiping Zhou
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
4
|
Huang M, Teng Q, Cao F, Huang J, Pang J. Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer. Biomater Sci 2024; 12:1617-1629. [PMID: 38379396 DOI: 10.1039/d3bm01894f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Incidence and mortality of prostate cancer (PCa) rank in the top five among male tumors. However, single treatment modalities are often restricted due to biochemical recurrence and drug resistance, necessitating the development of new approaches for the combination treatment of castration-resistant and neuroendocrine PCa. Ferroptosis is characterized by the accumulation of iron-overload-mediated lipid peroxidation and has shown promising outcomes in anticancer treatment, prompting us to present a review reporting the application of ferroptosis in the treatment of PCa. First, the process and mechanism of ferroptosis are briefly reviewed. Second, research advances combining ferroptosis-inducing agents and clinical treatment regimens, which exhibit a "two-pronged approach" effect, are further summarized. Finally, the recent progress on ferroptosis-inducing nanomaterials for combination anticancer therapy is presented. This review is expected to provide novel insights into ferroptosis-based combination treatment in drug-resistant PCa.
Collapse
Affiliation(s)
- Mengjun Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Qiliang Teng
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Fei Cao
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jinsheng Huang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
5
|
Cheng FE, Li Z, Bai X, Jing Y, Zhang J, Shi X, Li T, Li W. Investigation on the mechanism of the combination of eremias multiocellata and cisplatin in reducing chemoresistance of gastric cancer based on in vitro and in vivo experiments. Aging (Albany NY) 2024; 16:3386-3403. [PMID: 38345573 PMCID: PMC10929809 DOI: 10.18632/aging.205540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Cisplatin (DDP) is one of the important chemotherapy drugs for patients with advanced gastric cancer and metastasis, but its resistance is a bottleneck problem that affects clinical efficacy and patient survival. Eremias multiocellata (EM) is a traditional Chinese herbal medicine, which has been used in the treatment of precancerous lesions, gastric cancer, liver fibrosis, and other digestive diseases. However, the mechanism of reducing chemotherapy resistance to gastric cancer is still unclear. METHODS We used the MTT assay to evaluate the proliferative viability of gastric cancer parental cell line MKN45 and its drug-resistant cell line MKN45/DDP, and compared their drug-resistance indices. The migration and invasion abilities of MKN45/DDP drug-resistant cells were evaluated using the Transwell assay. Apoptosis in MKN45/DDP drug-resistant cells was detected using flow cytometry. The effect of a combination of EM and cisplatin on the levels of reactive oxygen species (ROS) and lipid peroxides (LPO) in cisplatin-resistant gastric cancer cells was detected using ROS fluorescent probes and a lipid peroxidation assay kit in conjunction with flow cytometry. The effect of EM combined with cisplatin on the level of iron ions was detected by fluorescence probe and confocal laser technique. Hematoxylin-eosin staining (HE staining) was used to detect the histopathologic morphology of drug-resistant gastric cancer in nude mice. Ferroptosis-related proteins were measured using immunohistochemistry. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect tumor drug resistance-related genes. The NF-κB/Snail pathway-related proteins, PI3K/AKT/mTOR pathway-related proteins, and drug resistance-related proteins were detected by Western blot. RESULTS AND CONCLUSIONS The results of in vitro and in vivo experiments showed that EM combined with DDP could effectively inhibit the migration and invasive ability of MKN45/DDP cells, as well as induce apoptosis of MKN45/DDP cells; the combination of the two drugs could significantly increase the levels of ROS, lipid peroxidation and divalent ferric ions in MKN45/DDP cells, at the same time reducing the levels of Ferroptosis-related proteins, which could induce Ferroptosis. In addition, EM combined with DDP can also exert the effect of reversing DDP resistance and increasing the sensitivity of gastric cancer drug-resistant cells to DDP by regulating the NF-κB/Snail signaling pathway, PI3K/AKT/mTOR signaling pathway, and the expression of drug resistance-related proteins and genes.
Collapse
Affiliation(s)
- Fan-e Cheng
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zheng Li
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xing Bai
- School of Basic Medicine, Zhejiang University of Chinese Medicine, Hangzhou 310053, Zhejiang, China
| | - Yanyan Jing
- Graduate School, Tianjin University of Chinese Medicine, Tianjin 300193, Tianjin, China
| | - Junfei Zhang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Xiaoqian Shi
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Tingting Li
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Weiqiang Li
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Dos Reis Oliveira C, Pereira JC, Barros Ibiapina A, Roseno Martins IR, de Castro E Sousa JM, Ferreira PMP, Carneiro da Silva FC. Buthionine sulfoximine and chemoresistance in cancer treatments: a systematic review with meta-analysis of preclinical studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:417-441. [PMID: 37606035 DOI: 10.1080/10937404.2023.2246876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Buthionine sulfoximine (BSO) is a synthetic amino acid that blocks the biosynthesis of reduced glutathione (GSH), an endogenous antioxidant cellular component present in tumor cells. GSH levels have been associated with tumor cell resistance to chemotherapeutic drugs and platinum compounds. Consequently, by depleting GSH, BSO enhances the cytotoxicity of chemotherapeutic agents in drug-resistant tumors. Therefore, the aim of this study was to conduct a systematic review with meta-analysis of preclinical studies utilizing BSO in cancer treatments. The systematic search was carried out using the following databases: PubMed, Web of Science, Scopus, and EMBASE up until March 20, 2023, in order to collect preclinical studies that evaluated BSO, alone or in association, as a strategy for antineoplastic therapy. One hundred nine investigations were found to assess the cytotoxic potential of BSO alone or in combination with other compounds. Twenty-one of these met the criteria for performing the meta-analysis. The evidence gathered indicated that BSO alone exhibits cytotoxic activity. However, this compound is generally used in combination with other antineoplastic strategies, mainly chemotherapy ones, to improve cytotoxicity to carcinogenic cells and treatment efficacy. Finally, this review provides important considerations regarding BSO use in cancer treatment conditions, which might optimize future studies as a potential adjuvant antineoplastic therapeutic tool.
Collapse
Affiliation(s)
| | - Joedna Cavalcante Pereira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | | | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
8
|
Shi HX, Zhao X, Yang H, Cheng Y, Jiang J, Jiang R. Low androgen levels induce ferroptosis of rat penile cavernous endothelial cells. Sex Med 2023; 11:qfad043. [PMID: 37547873 PMCID: PMC10401903 DOI: 10.1093/sexmed/qfad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Background Endothelial dysfunction caused by low androgen levels in penile tissue can lead to erectile dysfunction. The exact mechanism of endothelial dysfunction has not been thoroughly studied. Objective The study sought to verify whether low androgen levels induce ferroptosis of endothelial cells in rat penile tissue. Methods Rat penile cavernous endothelial cells (CP-R133) were divided into a no-androgen group (Dihydrotestosterone (DHT): 0 nmol/L), very low-androgen group (DHT: 0.1 nmol/L), low-androgen group (DHT: 1 nmol/L), DHT = 10 nmol/L group, DHT (0 nmol/L) + ferrostatin-1 (Fer-1) group, DHT (0.1 nmol/L) + Fer-1 group, DHT (1 nmol/L) + Fer-1 group, DHT (10 nmol/L) + Fer-1 group. Cell viability, intracellular ferrous ion (Fe2+), malondialdehyde (MDA), GSH into oxidized glutathione (GSSG), reactive oxygen species (ROS), nitric oxide (NO), transferrin receptor 1 protein (TfR1), solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4), endothelial nitric oxide synthase (eNOS), and phospho-eNOS (p-eNOS) were detected. Outcomes Low androgen levels could induce ferroptosis of rat penile cavernous endothelial cells in vivo by upregulating the expressions of TfR1 and ACSL4 and downregulating the expressions of SLC7A11 and GPX4. Results Cell viability, the levels of glutathione (GSH), NO, SLC7A11, GPX4, and p-eNOS/eNOS in the DHT = 0 nmol/L group were lower than those in the other groups (P < .05). The levels of Fe2+, ROS, MDA, GSSG, TfR1, and ACSL4 in the DHT = 0 nmol/L group were higher than those in the other groups (P < .05). Cell viability and the levels of GSH, NO, SLC7A11, GPX4, and p-eNOS/eNOS in the DHT = 1 nmol/L group were lower than those in the DHT (1 nmol/L) + Fer-1 group, DHT = 10 nmol/L group, and DHT (10 nmol/L) + Fer-1 group (P < .05). The levels of Fe2+, ROS, MDA, GSSG, TfR1, and ACSL4 in the DHT = 1 nmol/L group were higher than those in the DHT (1 nmol/L) + Fer-1 group, DHT = 10 nmol/L group, and DHT (10 nmol/L) + Fer-1 group (P < .05). Clinical Implications A ferroptosis inhibitor might be a novel drug for treating erectile dysfunction caused by low androgen level. Strengths and Limitations The results of this study need to be further confirmed in in vitro and in human studies. Meanwhile, further investigation is needed to clarify whether low androgen levels affect ferroptosis of rat penile cavernous smooth muscle and nerve cells. Conclusion Low androgen levels can induce ferroptosis of endothelial cells in rat penile tissue. Inhibition of ferroptosis can reverse endothelial dysfunction caused by low androgen levels.
Collapse
Affiliation(s)
- Hong-Xing Shi
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin Zhao
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haifan Yang
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yong Cheng
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital, Southwest Medical University, Taiping Road, Luzhou, Sichuan 646000, China
| |
Collapse
|
9
|
Feng D, Li L, Li D, Wu R, Zhu W, Wang J, Ye L, Han P. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur J Med Res 2023; 28:245. [PMID: 37480146 PMCID: PMC10362756 DOI: 10.1186/s40001-023-01215-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and proliferation experiment. METHODS We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro experiment with R 3.6.3 software and its suitable packages. RESULTS P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expression was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells. CONCLUSIONS In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
10
|
Koeberle SC, Kipp AP, Stuppner H, Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev 2023; 43:614-682. [PMID: 36658724 PMCID: PMC10947485 DOI: 10.1002/med.21933] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.
Collapse
Affiliation(s)
- Solveigh C. Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| |
Collapse
|
11
|
Liang J, Liao Y, Wang P, Yang K, Wang Y, Wang K, Zhong B, Zhou D, Cao Q, Li J, Zhao Y, Jiang N. Ferroptosis landscape in prostate cancer from molecular and metabolic perspective. Cell Death Discov 2023; 9:128. [PMID: 37061523 PMCID: PMC10105735 DOI: 10.1038/s41420-023-01430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Prostate cancer is a major disease that threatens men's health. Its rapid progression, easy metastasis, and late castration resistance have brought obstacles to treatment. It is necessary to find new effective anticancer methods. Ferroptosis is a novel iron-dependent programmed cell death that plays a role in various cancers. Understanding how ferroptosis is regulated in prostate cancer will help us to use it as a new way to kill cancer cells. In this review, we summarize the regulation and role of ferroptosis in prostate cancer and the relationship with AR from the perspective of metabolism and molecular pathways. We also discuss the feasibility of ferroptosis in prostate cancer treatment and describe current limitations and prospects, providing a reference for future research and clinical application of ferroptosis.
Collapse
Affiliation(s)
- Jiaming Liang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yihao Liao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Pu Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Kun Yang
- School of Future Technology, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China
| | - Youzhi Wang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Keke Wang
- Department of Urology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Boqiang Zhong
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Diansheng Zhou
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Qian Cao
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Junbo Li
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yang Zhao
- Department of Radiology, Tianjin Medical University Second Hospital, Tianjin, China
| | - Ning Jiang
- Tianjin institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
12
|
Zhang Y, Ma S, Zhang J, Lou L, Liu W, Gao C, Miao L, Sun F, Chen W, Cao X, Wei J. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci Rep 2023; 13:5935. [PMID: 37045834 PMCID: PMC10097650 DOI: 10.1038/s41598-022-21447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/27/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs play a critical regulatory role in different cancers, but their functions in renal cell carcinoma (RCC) have not been elucidated. Reportedly, miR-142-3p is involved in the tumorigenesis and the development of RCC in vitro and is clinically correlated with the poor prognosis of RCC patients. However, the molecular target of miR-142-3p and the underlying mechanism are unclear. In this study, we found that miR-142-3p was upregulated in RCC tumor tissues and downregulated in exosomes compared to normal tissues. The expression of miR-142-3p was inversely associated with the survival of patients with kidney renal clear cell carcinoma (KIRC). RhoBTB3 was reduced in RCC, and miR-142-3p plays an inverse function with RhoBTB3 in KIRC. The direct interaction between RhoBTB3 and miR-142-3p was demonstrated by a dual luciferase reporter assay. miR-142-3p promoted metastasis in the xenograft model, and the suppression of miR-142-3p upregulated RhoBTB3 protein expression and inhibited the mRNAs and proteins of HIF1A, VEGFA, and GGT1. Also, the miR-142-3p overexpression upregulated the mRNA of HIF1A, VEGFA, and GGT1. In conclusion, miR-142-3p functions as an oncogene in RCC, especially in KIRC, by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways, which needs further exploration.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Sha Ma
- Department of Hematopathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, China
| | - Lu Lou
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wanqi Liu
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Chao Gao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Long Miao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Fanghao Sun
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wei Chen
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Xiliang Cao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| | - Jin Wei
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| |
Collapse
|
13
|
Xie Z, Zhou Q, Qiu C, Zhu D, Li K, Huang H. Inaugurating a novel adjuvant therapy in urological cancers: Ferroptosis. CANCER PATHOGENESIS AND THERAPY 2023; 1:127-140. [PMID: 38328400 PMCID: PMC10846326 DOI: 10.1016/j.cpt.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 02/09/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, is involved in numerous diseases with specific characteristics, including certain cell morphology, functions, biochemistry, and genetics, that differ from other forms of programmed cell death, such as apoptosis. Many studies have explored ferroptosis and its associated mechanisms, drugs, and clinical applications in diseases such as kidney injury, stroke, ischemia-reperfusion injury, and prostate cancer. In this review, we summarize the regulatory mechanisms of some ferroptosis inducers, such as enzalutamide and erastin. These are current research focuses and have already been studied extensively. In summary, this review focuses on the use of ferroptosis induction as a therapeutic strategy for treating tumors of the urinary system.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
14
|
Wang Y, Ma Y, Jiang K. The role of ferroptosis in prostate cancer: a novel therapeutic strategy. Prostate Cancer Prostatic Dis 2023; 26:25-29. [PMID: 36056183 PMCID: PMC10023567 DOI: 10.1038/s41391-022-00583-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
The incidence of prostate cancer is the second most among male cancers after lung cancer. Prostate cancer develops rapidly and is inclined to metastasize, and castration-resistant prostate cancer (CRPC) can be formed in the later stage, which brings great challenges to the prognosis and treatment. At present, the main treatment of prostate cancer is generally divided into four methods: surgery, chemotherapy, radiotherapy and endocrine therapy. However, the efficacy of these methods fails to satisfy the demands of patient prognosis. Ferroptosis is a newly discovered iron-dependent process, characterized by lipid peroxidation. Ferroptosis is associated with many diseases, especially tumor growth. In recent years, inhibiting tumor growth and overcoming tumor drug resistance by inducing ferroptosis has become a hot research topic. Previous studies have shown that induction of ferroptosis may be a new treatment for prostate cancer. We review the research progress of ferroptosis in prostate cancer in order to provide highly effective therapies for patients with prostate cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yifan Ma
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kui Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
15
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
16
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 2022; 13:910292. [PMID: 36105219 PMCID: PMC9465090 DOI: 10.3389/fphar.2022.910292] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc−), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc−/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc−/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc−/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Collapse
Affiliation(s)
- Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|
17
|
Zhao S, Li P, Wu W, Wang Q, Qian B, Li X, Shen M. Roles of ferroptosis in urologic malignancies. Cancer Cell Int 2021; 21:676. [PMID: 34922551 PMCID: PMC8684233 DOI: 10.1186/s12935-021-02264-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, is believed to strongly contribute to the pathogenesis of multiple cancers. Recently, the positive association between ferroptosis and urologic malignancies has drawn considerable attention, while a comprehensive review focused on this issue is absent. Based on this review, ferroptosis has been implicated in the development and therapeutic responses of prostate cancer, kidney cancer, and bladder cancer. Mechanistically, a large number of biomolecules and tumor-associated signaling pathways, including DECR1, PANX2, HSPB1, ACOT8, SUV39H1, NCOA4, PI3K-AKT-mTOR signaling, VHL/HIF-2α pathway, and Hippo/TAZ signaling pathway, have been reported to regulate ferroptosis in urologic cancers. Ferroptosis inducers, such as erastin, ART, CPNPs, and quinazolinyl-arylurea derivatives, exert potential therapeutic effects per se and/or enhance the anticancer response of other anticancer drugs in urologic oncology. A better understanding of ferroptosis may provide a promising way to treat therapy-resistant urologic cancers.
Collapse
Affiliation(s)
- Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Peng Li
- Department of Urology, Qingdao Women and Children's Hospital, Qingdao, 266000, Shandong, China
| | - Weizhou Wu
- Department of Urology, Maoming People's Hospital, Maoming, 525000, Guangdong, China
| | - Qinzhang Wang
- Department of Urology, The First Affiliated Hospital of Shihezi University Medical School, Shihezi, China
| | - Biao Qian
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China.
| | - Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
18
|
Nie Z, Chen M, Gao Y, Huang D, Cao H, Peng Y, Guo N, Zhang S. Regulated Cell Death in Urinary Malignancies. Front Cell Dev Biol 2021; 9:789004. [PMID: 34869390 PMCID: PMC8633115 DOI: 10.3389/fcell.2021.789004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary malignancies refer to a series of malignant tumors that occur in the urinary system and mainly include kidney, bladder, and prostate cancers. Although local or systemic radiotherapy and chemotherapy, immunotherapy, castration therapy and other methods have been applied to treat these diseases, their high recurrence and metastasis rate remain problems for patients. With in-depth research on the pathogenesis of urinary malignant tumors, this work suggests that regulatory cell death (RCD) plays an important role in their occurrence and development. These RCD pathways are stimulated by various internal and external environmental factors and can induce cell death or permit cell survival under the control of various signal molecules, thereby affecting tumor progression or therapeutic efficacy. Among the previously reported RCD methods, necroptosis, pyroptosis, ferroptosis, and neutrophil extracellular traps (NETs) have attracted research attention. These modes transmit death signals through signal molecules, such as cysteine-aspartic proteases (caspase) family and tumor necrosis factor-α (TNF-α) that have a wide and profound influence on tumor proliferation or death and even change the sensitivity of tumor cells to therapy. This review discussed the effects of necroptosis, pyroptosis, ferroptosis, and NETs on kidney, bladder and prostate cancer and summarized the latest research and achievements in these fields. Future directions and possibility of improving the denouement of urinary system tumors treatment by targeting RCD therapy were also explored.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
19
|
Lv Z, Wang J, Wang X, Mo M, Tang G, Xu H, Wang J, Li Y, Liu M. Identifying a Ferroptosis-Related Gene Signature for Predicting Biochemical Recurrence of Prostate Cancer. Front Cell Dev Biol 2021; 9:666025. [PMID: 34778244 PMCID: PMC8586218 DOI: 10.3389/fcell.2021.666025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Ferroptosis induced by lipid peroxidation is closely related to cancer biology. Prostate cancer (PCa) is not only a malignant tumor but also a lipid metabolic disease. Previous studies have identified ferroptosis as an important pathophysiological pathway in PCa development and treatment, but its role in the prognosis of PCa is less well known. In this study, we constructed a nine-ferroptosis-related gene risk model that demonstrated strong prognostic and therapeutic predictive power. The higher risk score calculated by the model was significantly associated with a higher ferroptosis potential index, higher Ki67 expression, higher immune infiltration, higher probability of biochemical recurrence, worse clinicopathological characteristics, and worse response to chemotherapy and antiandrogen therapy in PCa. The mechanisms identified by the gene set enrichment analysis suggested that this signature can accurately distinguish high- and low-risk populations, which is possibly closely related to variations in steroid hormone secretion, regulation of endocrine processes, positive regulation of humoral immune response, and androgen response. Results of this study were confirmed in two independent PCa cohorts, namely, The Cancer Genome Atlas cohort and the MSK-IMPACT Clinical Sequencing Cohort, which contributed to the body of scientific evidence for the prediction of biochemical recurrence in patients with PCa. In addition, as the main components of this signature, the effects of the AIFM2 and NFS1 genes on ferroptosis were evaluated and verified by in vivo and in vitro experiments, respectively. The above findings provided new insights and presented potential clinical applications of ferroptosis in PCa.
Collapse
Affiliation(s)
- Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianlong Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|