1
|
Chen Z, Li N, Li L, Liu Z, Zhao W, Li Y, Huang X, Li X. BCDPi: An interpretable multitask deep neural network model for predicting chemical bioconcentration in fish. ENVIRONMENTAL RESEARCH 2025; 264:120356. [PMID: 39549907 DOI: 10.1016/j.envres.2024.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Predicting the bioconcentration of chemical compounds plays a crucial role in assessing environmental risks and toxicological impacts. This study presents a robust multitask deep learning model for predicting the bioconcentration potential. The model can predict the bioconcentration of compounds in multiple categories, including non-bioconcentrative (non-BC), weakly bioconcentrative (weak-BC), and strongly bioconcentrative (strong-BC). We also employed the SHapley Additive exPlanations (SHAP) technology for the model interpretation. The binary classification models (non-BC vs BC and weak-BC vs strong-BC) showed good predictive performance, which achieved accuracy values over 90% and area under the curve (AUC) values with 0.95. The final ternary classification model provided an overall accuracy with 91.11%. Comparative analysis of molecular physicochemical properties showed that the importance of molecular weight, polar surface area, solubility, and hydrogen bonding are important for chemical bioconcentration. Besides, we identified eight structural alerts responsible for chemical bioconcentration. We made the model available as an online tool named BCdpi-predictor, which is accessible at http://bcdpi.sapredictor.cn/. Users can predict the bioconcentration potential of chemical compounds freely. The model has significant implications for environmental policy and regulatory frameworks, such as REACH, by providing a more accurate and interpretable method for assessing chemical risks. We hope that the results of this study can provide helpful tools and meaningful information for chemical bioconcentration prediction in environmental risk assessment.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Na Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Ling Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Zihan Liu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Wenqiang Zhao
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250014, China
| | - Yan Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xin Huang
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Xiao Li
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
2
|
Bueso-Bordils JI, Antón-Fos GM, Martín-Algarra R, Alemán-López PA. Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery. J Xenobiot 2024; 14:1901-1918. [PMID: 39728409 DOI: 10.3390/jox14040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology. A fine balance between target potency, selectivity, absorption, distribution, metabolism, excretion, toxicity (ADMET) and clinical safety properties should be achieved to discover a potential new drug. It is advantageous to perform virtual predictions as early as possible in drug development processes, even before a molecule is synthesized. Currently, there are numerous commercially available and free web-based programs for toxicity prediction, which can be used to construct various predictive models. The key features of the QSAR method are also outlined, and the selection of appropriate physicochemical descriptors is a prerequisite for robust predictions. In addition, examples of open-source tools applied to toxicity prediction are included, as well as examples of the application of different computational methods for the prediction of toxicity in drug design and environmental toxicology.
Collapse
Affiliation(s)
- Jose I Bueso-Bordils
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Gerardo M Antón-Fos
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Rafael Martín-Algarra
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Pedro A Alemán-López
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
3
|
Wang N, Li X, Xiao J, Liu S, Cao D. Data-driven toxicity prediction in drug discovery: Current status and future directions. Drug Discov Today 2024; 29:104195. [PMID: 39357621 DOI: 10.1016/j.drudis.2024.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Early toxicity assessment plays a vital role in the drug discovery process on account of its significant influence on the attrition rate of candidates. Recently, constant upgrading of information technology has greatly promoted the continuous development of toxicity prediction. To give an overview of the current state of data-driven toxicity prediction, we reviewed relevant studies and summarized them in three main respects: the features and difficulties of toxicity prediction, the evolution of modeling approaches, and the available tools for toxicity prediction. For each part, we expound the research status, existing challenges, and feasible solutions. Finally, several new directions and suggestions for toxicity prediction are also put forward.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha 410008 Hunan, PR China
| | - Xinliang Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha 410008 Hunan, PR China
| | - Jing Xiao
- Hunan Institute for Drug Control, Changsha 410001 Hunan, PR China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha 410008 Hunan, PR China.
| | - Dongsheng Cao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008 Hunan, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, PR China.
| |
Collapse
|
4
|
Meng L, Zhou B, Liu H, Chen Y, Yuan R, Chen Z, Luo S, Chen H. Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174201. [PMID: 38936709 DOI: 10.1016/j.scitotenv.2024.174201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
Collapse
Affiliation(s)
- Lingxuan Meng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Yuefang Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Chen Z, Zhang L, Zhang P, Guo H, Zhang R, Li L, Li X. Prediction of Cytochrome P450 Inhibition Using a Deep Learning Approach and Substructure Pattern Recognition. J Chem Inf Model 2024; 64:2528-2538. [PMID: 37864562 DOI: 10.1021/acs.jcim.3c01396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Cytochrome P450 (CYP) is a family of enzymes that are responsible for about 75% of all metabolic reactions. Among them, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 participate in the metabolism of most drugs and mediate many adverse drug reactions. Therefore, it is necessary to estimate the chemical inhibition of Cytochrome P450 enzymes in drug discovery and the food industry. In the past few decades, many computational models have been reported, and some provided good performance. However, there are still several issues that should be resolved for these models, such as single isoform, models with unbalanced performance, lack of structural characteristics analysis, and poor availability. In the present study, the deep learning models based on python using the Keras framework and TensorFlow were developed for the chemical inhibition of each CYP isoform. These models were established based on a large data set containing 85715 compounds extracted from the PubChem bioassay database. On external validation, the models provided good AUC values with 0.97, 0.94, 0.94, 0.96, and 0.94 for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. The models can be freely accessed on the Web server named CYPi-DNNpredictor (cypi.sapredictor.cn), and the codes for the model were made open source in the Supporting Information. In addition, we also analyzed the structural characteristics of chemicals with CYP450 inhibition and detected the structural alerts (SAs), which should be responsible for the inhibition. The SAs were also made available online, named CYPi-SAdetector (cypisa.sapredictor.cn). The models can be used as a powerful tool for the prediction of CYP450 inhibitors, and the SAs should provide useful information for the mechanisms of Cytochrome P450 inhibition.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Le Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Ling Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| |
Collapse
|
6
|
Martini A, Cozza A, Di Pasquale Fiasca VM. The Inheritance of Hearing Loss and Deafness: A Historical Perspective. Audiol Res 2024; 14:116-128. [PMID: 38391767 PMCID: PMC10886121 DOI: 10.3390/audiolres14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
If the term "genetics" is a relatively recent proposition, introduced in 1905 by English biologist William Bateson, who rediscovered and spread in the scientific community Mendel's principles of inheritance, since the dawn of human civilization the influence of heredity has been recognized, especially in agricultural crops and animal breeding. And, later, in familial dynasties. In this concise review, we outline the evolution of the idea of hereditary hearing loss, up to the current knowledge of molecular genetics and epigenetics.
Collapse
Affiliation(s)
- Alessandro Martini
- Padova University Research Center "International Auditory Processing Project in Venice (I-APPROVE)", Department of Neurosciences, University of Padua, 35128 Padua, Italy
| | - Andrea Cozza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | | |
Collapse
|
7
|
Gao J, Zhao J, Chen X, Wang J. A review on in silico prediction of the environmental risks posed by pharmaceutical emerging contaminants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1535. [PMID: 38008816 DOI: 10.1007/s10661-023-12159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Computer-aided (in silico) prediction has shown good potential to support the environmental risk assessment (ERA) of pharmaceutical emerging contaminants (PECs), allowing low-cost, animal-free, high-throughput screening of multiple potential risks posed by a wide variety of pharmaceuticals in the environment based on insufficient toxicity data. This review provided recent insights regarding the application of in silico approaches in prediction for environmental risks of PECs. Based on the review of 20 included articles from 8 countries published since 2018, we found that the researchers' interest and concern in this research topic were sharply aroused since 2021. Recently, in silico approaches have been widely used for the prediction of bioaccumulation and biodegradability, lethal endpoints, developmental toxicity, mutagenicity, other eco-toxicological effects such as ototoxicity and hematological toxicity, and human health hazards of exposure to PECs. Particular attention has been given to the simultaneous discernment of multiple environmental risks and health effects of PECs based on mechanistic data of pharmaceuticals using advanced bioinformatic methods such as transcriptomic analysis and network pharmacology prediction. In silico software platforms and databases used in the included studies were diversified, and there is currently no standardized and accepted in silico model for ERA of PECs. Date suggested that in silico prediction of the environmental risks posed by PECs is still in its infancy. Considerable critical challenges need to be addressed, including consideration of environmental exposure concentration for PECs, interactions among mixtures of PECs and other contaminants coexisting in environments, and development of in silico models specific to ERA of PECs.
Collapse
Affiliation(s)
- Jian Gao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinru Zhao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xintong Chen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
8
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
9
|
Wu X, Huang M, Huang W, Zhao S, Xie J, Liu G, Chang S. Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness. Front Genet 2023; 14:1113095. [PMID: 36760995 PMCID: PMC9907458 DOI: 10.3389/fgene.2023.1113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Syndromic deafness caused by PTPN11 gene mutation has gradually come into the public's view. In the past, many people did not understand its application mechanism and role and only focused on non-syndromic deafness, so the research on syndromic deafness is not in-depth and there is a large degree of lack of research in this area. In order to let the public know more about the diagnosis and gene function of deafness caused by PTPN11 gene mutation syndrome, this paper used deep learning technology to study the diagnosis and gene function of deafness caused by syndrome with the concept of intelligent medical treatment, and finally drew a feasible conclusion. This paper provided a theoretical and practical basis for the diagnosis of deafness caused by PTPN11 gene mutation syndrome and the study of gene function. This paper made a retrospective analysis of the clinical data of 85 deaf children who visited Hunan Children's Hospital,P.R. China from January 2020 to December 2021. The conclusion were as follows: Children aged 1-6 years old had multiple syndrome deafness, while children under 1 year old and children aged 6-12 years old had relatively low probability of complex deafness; girls were not easy to have comprehensive deafness, but there was no specific basis to prove that the occurrence of comprehensive deafness was necessarily related to gender; the hearing loss of patients with Noonan Syndrome was mainly characterized by moderate and severe damage and abnormal inner ear and auditory nerve; most of the mutation genes in children were located in Exon1 and Exon3, with a total probability of 57.65%. In the course of the experiment, it was found that deep learning was effective in the diagnosis of deafness with PTPN11 gene mutation syndrome. This technology could be applied to medical diagnosis to facilitate the diagnosis and treatment of more patients with deafness with syndrome. Intelligent medical treatment was also becoming a hot topic nowadays. By using this concept to analyze and study the pathological characteristics of deafness caused by PTPN11 gene mutation syndrome, it not only promoted patients to find diseases in time, but also helped doctors to diagnose and treat such diseases, which was of great significance to patients and doctors. The study of PTPN11 gene mutation syndrome deafness was also of great significance in genetics. The analysis of its genes not only enriched the gene pool, but also provided reference for future research.
Collapse
Affiliation(s)
- Xionghui Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Min Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Hunan Children’s Hospital, Changsha, Hunan, China,*Correspondence: Min Huang,
| | - Weiqing Huang
- Department of Neonatology, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Sijun Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Jiang Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Guangliang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Shuting Chang
- Department of Neonatology, Hunan Children’s Hospital, Changsha, Hunan, China
| |
Collapse
|
10
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
11
|
Zhao X, Sun Y, Zhang R, Chen Z, Hua Y, Zhang P, Guo H, Cui X, Huang X, Li X. Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. J Chem Inf Model 2022; 62:6035-6045. [PMID: 36448818 DOI: 10.1021/acs.jcim.2c01131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neurotoxicity can be resulted from many diverse clinical drugs, which has been a cause of concern to human populations across the world. The detection of drug-induced neurotoxicity (DINeurot) potential with biological experimental methods always required a lot of budget and time. In addition, few studies have addressed the structural characteristics of neurotoxic chemicals. In this study, we focused on the computational modeling for drug-induced neurotoxicity with machine learning methods and the insights into the structural characteristics of neurotoxic chemicals. Based on the clinical drug data with neurotoxicity effects, we developed 35 different classifiers by combining five different machine learning methods and seven fingerprint packages. The best-performing model achieved good results on both 5-fold cross-validation (balanced accuracy of 76.51%, AUC value of 0.83, and MCC value of 0.52) and external validation (balanced accuracy of 83.63%, AUC value of 0.87, and MCC value of 0.67). The model can be freely accessed on the web server DINeuroTpredictor (http://dineurot.sapredictor.cn/). We also analyzed the distribution of several key molecular properties between neurotoxic and non-neurotoxic structures. The results indicated that several physicochemical properties were significantly different between the neurotoxic and non-neurotoxic compounds, including molecular polar surface area (MPSA), AlogP, the number of hydrogen bond acceptors (nHAcc) and donors (nHDon), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). In addition, 18 structural alerts responsible for chemical neurotoxicity were identified. The structural alerts have been integrated with our web server SApredictor (http://www.sapredictor.cn). The results of this study could provide useful information for the understanding of the structural characteristics and computational prediction for chemical neurotoxicity.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Yuhao Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong250014, China
| |
Collapse
|
12
|
Guo H, Zhang P, Zhang R, Hua Y, Zhang P, Cui X, Huang X, Li X. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases. Front Immunol 2022; 13:1015409. [PMID: 36353637 PMCID: PMC9637949 DOI: 10.3389/fimmu.2022.1015409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 09/12/2023] Open
Abstract
The incidence and complexity of drug-induced autoimmune diseases (DIAD) have been on the rise in recent years, which may lead to serious or fatal consequences. Besides, many environmental and industrial chemicals can also cause DIAD. However, there are few effective approaches to estimate the DIAD potential of drugs and other chemicals currently, and the structural characteristics and mechanism of action of DIAD compounds have not been clarified. In this study, we developed the in silico models for chemical DIAD prediction and investigated the structural characteristics of DIAD chemicals based on the reliable drug data on human autoimmune diseases. We collected 148 medications which were reported can cause DIAD clinically and 450 medications that clearly do not cause DIAD. Several different machine learning algorithms and molecular fingerprints were combined to develop the in silico models. The best performed model provided the good overall accuracy on validation set with 76.26%. The model was made freely available on the website http://diad.sapredictor.cn/. To further investigate the differences in structural characteristics between DIAD chemicals and non-DIAD chemicals, several key physicochemical properties were analyzed. The results showed that AlogP, molecular polar surface area (MPSA), and the number of hydrogen bond donors (nHDon) were significantly different between the DIAD and non-DIAD structures. They may be related to the DIAD toxicity of chemicals. In addition, 14 structural alerts (SA) for DIAD toxicity were detected from predefined substructures. The SAs may be helpful to explain the mechanism of action of drug induced autoimmune disease, and can used to identify the chemicals with potential DIAD toxicity. The structural alerts have been integrated in a structural alert-based web server SApredictor (http://www.sapredictor.cn). We hope the results could provide useful information for the recognition of DIAD chemicals and the insights of structural characteristics for chemical DIAD toxicity.
Collapse
Affiliation(s)
- Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Peitao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Pei Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:3331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
Affiliation(s)
- María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Zhang R, Guo H, Hua Y, Cui X, Shi Y, Li X. Modeling and insights into the structural basis of chemical acute aquatic toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113940. [PMID: 35999760 DOI: 10.1016/j.ecoenv.2022.113940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
It has become a top global regulatory priority to prevent and control pollution from the release of synthetic chemicals, which continues to affect the aquatic communities. In the past decades, computational tools were largely used to significantly reduce the budget and time cost of chemical acute aquatic toxicity assessment. But the structural basis of toxic compounds was rarely analyzed. In the present study, we collected 1438, 485 and 961 chemicals with acute toxicity data records for three representative aquatic species, including Tetrahymena pyriformis, Daphnia magna, and Fathead minnow, respectively. A series of artificial intelligence models were developed using OCHEM tools. For each aquatic toxicity endpoint, a consensus model was developed based on the top performed individual models. The consensus models provided good performance on external validation sets with total accuracy values 96.88 %, 90.63 %, and 84.90 % for Tetrahymena pyriformis toxicity (TPT), Daphnia magna toxicity (DMT), and Fathead minnow toxicity (FMT), respectively. The models can be freely accessed via https://ochem.eu/article/146910. Moreover, the analysis of physical-chemical properties suggested that several key molecular properties of aquatic toxic compounds were significantly different with those of non-toxic compounds. Thus, these descriptors may be associated to chemical acute aquatic toxicity, and may be useful for the understand of chemical aquatic toxicity. Besides, in this study, the structural alerts for aquatic toxicity were detected using f-score and frequency ratio analysis of predefined substructures. A total of 112, 58 and 33 structural alerts were identified responsible for TPT, DMT, and FMT, respectively. These structural alerts could provide useful information for the mechanisms of chemical aquatic toxicity and visual alerts for environmental assessment. All the structural alerts were integrated in the web-server SApredictor (www.sapredictor.cn).
Collapse
Affiliation(s)
- Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Yinping Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan 250014, China; Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China.
| |
Collapse
|
15
|
Hua Y, Cui X, Liu B, Shi Y, Guo H, Zhang R, Li X. SApredictor: An Expert System for Screening Chemicals Against Structural Alerts. Front Chem 2022; 10:916614. [PMID: 35910729 PMCID: PMC9326022 DOI: 10.3389/fchem.2022.916614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be “black box”, which bring about poor interpretability. In the present study, we focused on the identification and collection of structural alerts (SAs) responsible for a series of important toxicity endpoints. Then, we carried out effective storage of these structural alerts and developed a web-server named SApredictor (www.sapredictor.cn) for screening chemicals against structural alerts. People can quickly estimate the toxicity of chemicals with SApredictor, and the specific key substructures which cause the chemical toxicity will be intuitively displayed to provide valuable information for the structural optimization by medicinal chemists.
Collapse
Affiliation(s)
- Yuqing Hua
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xueyan Cui
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yinping Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Huizhu Guo
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Ruiqiu Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- *Correspondence: Xiao Li, , , orcid.org/0000-0002-1148-9898
| |
Collapse
|
16
|
Shi Y, Hua Y, Wang B, Zhang R, Li X. In Silico Prediction and Insights Into the Structural Basis of Drug Induced Nephrotoxicity. Front Pharmacol 2022; 12:793332. [PMID: 35082675 PMCID: PMC8785686 DOI: 10.3389/fphar.2021.793332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Drug induced nephrotoxicity is a major clinical challenge, and it is always associated with higher costs for the pharmaceutical industry and due to detection during the late stages of drug development. It is desirable for improving the health outcomes for patients to distinguish nephrotoxic structures at an early stage of drug development. In this study, we focused on in silico prediction and insights into the structural basis of drug induced nephrotoxicity, based on reliable data on human nephrotoxicity. We collected 565 diverse chemical structures, including 287 nephrotoxic drugs on humans in the real world, and 278 non-nephrotoxic approved drugs. Several different machine learning and deep learning algorithms were employed for in silico model building. Then, a consensus model was developed based on three best individual models (RFR_QNPR, XGBOOST_QNPR, and CNF). The consensus model performed much better than individual models on internal validation and it achieved prediction accuracy of 86.24% external validation. The results of analysis of molecular properties differences between nephrotoxic and non-nephrotoxic structures indicated that several key molecular properties differ significantly, including molecular weight (MW), molecular polar surface area (MPSA), AlogP, number of hydrogen bond acceptors (nHBA), molecular solubility (LogS), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). These molecular properties may be able to play an important part in the identification of nephrotoxic chemicals. Finally, 87 structural alerts for chemical nephrotoxicity were mined with f-score and positive rate analysis of substructures from Klekota-Roth fingerprint (KRFP). These structural alerts can well identify nephrotoxic drug structures in the data set. The in silico models and the structural alerts could be freely accessed via https://ochem.eu/article/140251 and http://www.sapredictor.cn, respectively. We hope the results should provide useful tools for early nephrotoxicity estimation in drug development.
Collapse
Affiliation(s)
- Yinping Shi
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yuqing Hua
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Pharmacy, Shandong First Medical University, Tai'an, China
| | - Baobao Wang
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ruiqiu Zhang
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,School of Pharmacy, Shandong First Medical University, Tai'an, China
| | - Xiao Li
- Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
17
|
Joint Decision-Making Model Based on Consensus Modeling Technology for the Prediction of Drug-Induced Liver Injury. J CHEM-NY 2021. [DOI: 10.1155/2021/2293871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major cause of clinical trial failure and postmarketing withdrawals of approved drugs. It is very expensive and time-consuming to evaluate hepatotoxicity using animal or cell-based experiments in the early stage of drug development. In this study, an in silico model based on the joint decision-making strategy was developed for DILI assessment using a relatively large dataset of 2608 compounds. Five consensus models were developed with PaDEL descriptors and PubChem, Substructure, Estate, and Klekota–Roth fingerprints, respectively. Submodels for each consensus model were obtained through joint optimization. The parameters and features of each submodel were optimized jointly based on the hybrid quantum particle swarm optimization (HQPSO) algorithm. The application domain (AD) based on the frequency-weighted and distance (FWD)-based method and Tanimoto similarity index showed the wide AD of the qualified consensus models. A joint decision-making model was integrated by the qualified consensus models, and the overwhelming majority principle was used to improve the performance of consensus models. The application scope narrowing caused by the overwhelming majority principle was successfully solved by joint decision-making. The proposed model successfully predicted 99.2% of the compounds in the test set, with an accuracy of 80.0%, a sensitivity of 83.9, and a specificity of 73.3%. For an external validation set containing 390 compounds collected from DILIrank, 98.2% of the compounds were successfully predicted with an accuracy of 79.9%, a sensitivity of 97.1%, and a specificity of 66.0%. Furthermore, 25 privileged substructures responsible for DILI were identified from Substructure, PubChem, and Klekota–Roth fingerprints. These privileged substructures can be regarded as structural alerts in hepatotoxicity evaluation. Compared with the main published studies, our method exhibits certain advantage in data size, transparency, and standardization of the modeling process and accuracy and credibility of prediction results. It is a promising tool for virtual screening in the early stage of drug development.
Collapse
|