1
|
Ibrahim NSM, Kadry HH, Zaher AF, Mohamed KO. Synthesis of novel pyrimido[4,5-b]quinoline derivatives as dual EGFR/HER2 inhibitors as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2300513. [PMID: 38148301 DOI: 10.1002/ardp.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
A series of novel N-aryl-5-aryl-6,7,8,9-tetrahydropyrimido[4,5-b]quinolin-4-amines 4a-4l was synthesized as potential anticancer agents through Dimroth rearrangement reaction of intermediates 3a-3c. Pyrimido[4,5-b]quinolines 4a-4l showed promising activity against the Michigan Cancer Foundation-7 (MCF-7) cell line, compared with lapatinib as the reference drug. Compounds 4d, 4h, 4i, and 4l demonstrated higher cytotoxic activity than lapatinib, with IC50 values of 2.67, 6.82, 4.31, and 1.62 µM, respectively. Compounds 4d, 4i, and 4l showed promising epidermal growth factor receptor (EGFR) inhibition with IC50 values of 0.065, 0.116, and 0.052 µM, respectively. These compounds were subjected to human epidermal growth factor receptor 2 (HER2) inhibition and showed IC50 values of 0.09, 0.164, and 0.055 µM, respectively. Compounds 4d, 4i, and 4l are good candidates as dual EGFR/HER2 inhibitors. The most active compound, 4l, was subjected to cell-cycle analysis and induced cell-cycle arrest at the S phase. Compound 4l induced apoptosis 60-fold compared with control untreated MCF-7 cells. 4l can inhibit cancer metastasis. It reduced MCF-7 cell infiltration and metastasis by 45% compared with control untreated cells.
Collapse
Affiliation(s)
- Nahla Said M Ibrahim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan H Kadry
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ashraf F Zaher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Arish Branch, Arish, Egypt
| |
Collapse
|
2
|
Abo Al-Hamd MG, Tawfik HO, Abdullah O, Yamaguchi K, Sugiura M, Mehany ABM, El-Hamamsy MH, El-Moselhy TF. Recruitment of hexahydroquinoline as anticancer scaffold targeting inhibition of wild and mutants EGFR (EGFR WT, EGFR T790M, and EGFR L858R). J Enzyme Inhib Med Chem 2023; 38:2241674. [PMID: 37548154 PMCID: PMC10408569 DOI: 10.1080/14756366.2023.2241674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
Hexahydroquinoline (HHQ) scaffold was constructed and recruited for development of new series of anticancer agents. Thirty-two new compounds were synthesised where x-ray crystallography was performed to confirm enantiomerism. Thirteen compounds showed moderate to good activity against NCI 60 cancer cell lines, with GI % mean up to 74% for 10c. Expending erlotinib as a reference drug, target compounds were verified for their inhibiting activities against EGFRWT, EGFRT790M, and EGFRL858R where compound 10d was the best inhibitor with IC50 = 0.097, 0.280, and 0.051 µM, respectively, compared to erlotinib (IC50 = 0.082 µM, 0.342 µM, and 0.055 µM, respectively). Safety profile was validated using normal human lung (IMR-90) cells. 10c and 10d disrupted cell cycle at pre-G1 and G2/M phases in lung cancer, HOP-92, and cell line. Molecular docking study was achieved to understand the potential binding interactions and affinities in the active sites of three versions of EGFRs.
Collapse
Affiliation(s)
- Mahmoud G. Abo Al-Hamd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tarek F. El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Gu L, Jin X, Liang H, Yang C, Zhang Y. Upregulation of CSNK1A1 induced by ITGB5 confers to hepatocellular carcinoma resistance to sorafenib in vivo by disrupting the EPS15/EGFR complex. Pharmacol Res 2023; 192:106789. [PMID: 37149115 DOI: 10.1016/j.phrs.2023.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Oral multitarget tyrosine kinase inhibitors (TKIs), such as sorafenib, which suppress tumor cell proliferation and tumor angiogenesis, have been approved to treat patients with hepatocellular carcinoma (HCC). Of note, only approximately 30% of patients can benefit from TKIs, and this population usually acquires drug resistance within 6 months. In this study, we intended to explore the mechanism associated with regulating the sensitivity of HCC to TKIs. We revealed that integrin subunit β 5 (ITGB5) is abnormally expressed in HCC and contributes to decreased the sensitivity of HCC to sorafenib. Mechanistically, unbiased mass spectrometry analysis using ITGB5 antibodies revealed that ITGB5 interacts with EPS15 to prevent the degradation of EGFR in HCC cells, which activates AKT-mTOR signaling and the MAPK pathway to reduce the sensitivity of HCC cells to sorafenib. In addition, mass spectrometry analysis showed that CSNK1A1 binds to ITGB5 in HCC cells. Further study indicated that ITGB5 increased the protein level of CSNK1A1 through the EGFR-AKT-mTOR pathway in HCC. Upregulated CSNK1A1 phosphorylates ITGB5 to enhance the interaction between ITGB5 and EPS15 and activate EGFR in HCC cells. Thus, we identified a positive feedback loop between ITGB5-EPS15-EGFR-CSNK1A1 in HCC cells. This finding provides a theoretical basis for the future development of therapeutic strategies to improve the anti-HCC efficacy of sorafenib.
Collapse
Affiliation(s)
- Li Gu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Yu Zhang
- Hepatobiliary and Pancreatic Surgery Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
4
|
Ebrahimi N, Fardi E, Ghaderi H, Palizdar S, Khorram R, Vafadar R, Ghanaatian M, Rezaei-Tazangi F, Baziyar P, Ahmadi A, Hamblin MR, Aref AR. Receptor tyrosine kinase inhibitors in cancer. Cell Mol Life Sci 2023; 80:104. [PMID: 36947256 PMCID: PMC11073124 DOI: 10.1007/s00018-023-04729-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/23/2023]
Abstract
Targeted therapy is a new cancer treatment approach, involving drugs that particularly target specific proteins in cancer cells, such as receptor tyrosine kinases (RTKs) which are involved in promoting growth and proliferation, Therefore inhibiting these proteins could impede cancer progression. An understanding of RTKs and the relevant signaling cascades, has enabled the development of many targeted drug therapies employing RTK inhibitors (RTKIs) some of which have entered clinical application. Here we discuss RTK structures, activation mechanisms and functions. Moreover, we cover the potential effects of combination drug therapy (including chemotherapy or immunotherapy agents with one RTKI or multiple RTKIs) especially for drug resistant cancers.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Elmira Fardi
- Medical Branch, Islamic Azad University of Tehran, Tehran, Iran
| | - Hajarossadat Ghaderi
- Laboratory of Regenerative and Medical Innovation, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Palizdar
- Division of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Tehran East Branch, Tehran, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Ghanaatian
- Master 1 Bio-Santé-Parcours Toulouse Graduate School of Cancer, Ageing and Rejuvenation (CARe), Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
5
|
Swathantraiah J, Srinivasa SM, Belagal Motatis AK, Uttarkar A, Bettaswamygowda S, Thimmaiah SB, Niranjan V, Rangappa S, Subbegowda RK, Ramegowda TN. Novel 1,2,5-Trisubstituted Benzimidazoles Potentiate Apoptosis by Mitochondrial Dysfunction in Panel of Cancer Cells. ACS OMEGA 2022; 7:46955-46971. [PMID: 36570271 PMCID: PMC9773948 DOI: 10.1021/acsomega.2c06057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Synthetic small molecules have been very effective in decimating cancer cells by targeting various aberrantly overexpressed oncogenic proteins. These small molecules target proteins involved in cell cycle regulation, cell division, migration, invasion, angiogenesis, and other regulatory proteins to induce apoptosis in cancer cells. In this study, we have synthesized a novel 1,2,5-trisubstituted benzimidazole chemical library of small molecules and unveiled their anticancer potential against a panel of cancer cell lines such as Jurkat, K-562, MOLT-4, HeLa, HCT116, and MIA PaCa-2 cancer cells. The MTT assay and Trypan blue dye exclusion assay clearly unveiled the cytotoxic effect of methyl 1-benzyl-2-(4-fluoro-3-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate (TJ08) and its potential to induce apoptosis with effective IC50 of 1.88 ± 0.51, 1.89 ± 0.55, 2.05 ± 0.72, 2.11 ± 0.62, 3.04 ± 0.8, and 3.82 ± 0.25 μM against Jurkat, K562, MOLT-4, HeLa, HCT116, and MIA PaCa-2 cancer cell lines, respectively. Altered mitochondrial membrane potential was observed in HeLa, HCT116, and Jurkat cells due to TJ08 treatment, which was unveiled by JC10 staining. Induction of early and late apoptosis by TJ08 treatment was also unveiled by apoptotic analysis and immunofluorescence imaging. Cell cycle analysis distribution confirms the accumulation of cells in the S-phase in a dose-dependent manner.
Collapse
Affiliation(s)
- Jagadeesha
Gullahalli Swathantraiah
- Government.
S. K. S. J. Technological Institute (Affiliated to Visvesvaraya Technological
University), K R Circle, Bangalore 560001, Karnataka, India
| | - Sudhanva Muddenahalli Srinivasa
- Adichunchanagiri
Institute for Molecular Medicine, Adichunchanagiri Institute of Medical
Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
- School
of Natural Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | - Anil Kumar Belagal Motatis
- Adichunchanagiri
Institute for Molecular Medicine, Adichunchanagiri Institute of Medical
Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | - Akshay Uttarkar
- Department
of Biotechnology, R V College of Engineering, Bengaluru 560059, Karnataka, India
| | - Shwetha Bettaswamygowda
- Department
of applied science, CPGS, Visvesvaraya Technological
University, Muddenahalli 562101, Karnataka, India
| | - Sridhar Bilgumba Thimmaiah
- Department
of Chemistry, Maharani’s Science College for Women, Maharani cluster University, Palace Road, Bangalore 560001, Karnataka, India
| | - Vidya Niranjan
- Department
of Biotechnology, R V College of Engineering, Bengaluru 560059, Karnataka, India
| | - Shobith Rangappa
- Adichunchanagiri
Institute for Molecular Medicine, Adichunchanagiri Institute of Medical
Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
- School
of Natural Sciences, Adichunchanagiri University, BG Nagara 571448, Karnataka, India
| | | | - Thimmegowda Naraganahalli Ramegowda
- Government.
S. K. S. J. Technological Institute (Affiliated to Visvesvaraya Technological
University), K R Circle, Bangalore 560001, Karnataka, India
| |
Collapse
|
6
|
Yu B, Yang X. Why are heterocycles so special in medicinal chemistry? Chem Biol Drug Des 2022; 100:763-764. [PMID: 36420571 DOI: 10.1111/cbdd.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuyan Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Cell Cycle Arrest and Apoptosis-Inducing Ability of Benzimidazole Derivatives: Design, Synthesis, Docking, and Biological Evaluation. Molecules 2022; 27:molecules27206899. [PMID: 36296495 PMCID: PMC9607330 DOI: 10.3390/molecules27206899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
In the current study, new benzimidazole-based 1,3,4-oxadiazole derivatives have been synthesized and characterized by NMR, IR, MS, and elemental analysis. The final compounds were screened for cytotoxicity against MDA-MB-231, SKOV3, and A549 cell lines and EGFR for inhibitory activities. Compounds 10 and 13 were found to be the most active against all the tested cell lines, comparable to doxorubicin, and exhibited significant inhibition on EGFR kinase, with IC50 0.33 and 0.38 μM, respectively, comparable to erlotinib (IC50 0.39 μM). Furthermore, these two compounds effectively suppressed cell cycle progression and induced cell apoptosis in MDA-MB-231, SKOV3, and A549 cell lines. The docking studies revealed that these compounds showed interactions similar to erlotinib at the EGFR site. It can be concluded that the synthesized molecules effectively inhibit EGFR, can arrest the cell cycle, and may trigger apoptosis and therefore, could be used as lead molecules in the development of new anticancer agents targeting EGFR kinase.
Collapse
|
8
|
New molecular hybrids containing benzimidazole, thiazolidine-2,4-dione and 1,2,4-oxadiazole as EGFR directing cytotoxic agents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|