1
|
Wang Y, Lai J, Chen Z, Sun L, Ma Y, Wu J. Exploring the therapeutic mechanisms of heart failure with Chinese herbal medicine: a focus on miRNA-mediated regulation. Front Pharmacol 2024; 15:1475975. [PMID: 39564110 PMCID: PMC11573571 DOI: 10.3389/fphar.2024.1475975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Heart failure (HF) is a clinical condition caused by abnormalities in the heart's structure or function, primarily manifested as diminished ability of the heart to pump blood, which leads to compensatory activation of neurohormones and increased left ventricular filling pressure. HF is one of the fastest-growing cardiovascular diseases globally in terms of incidence and mortality, negatively impacting patients' quality of life and imposing significant medical and economic burdens. Despite advancements in the treatment of HF, hospitalization and mortality remain rates high. In China, Chinese herbal medicine (CHM) has historically played a prominent role in addressing HF, with significant proven efficacy. MicroRNA (miRNA) exerts a pivotal regulatory influence on the maintenance of regular cardiac activity and the progression of HF. MiRNAs, a category of single-stranded RNA molecules, are characterized by their inability to code for proteins. They regulate gene expression by binding to the 3'-untranslated region (3'-UTR) of target mRNAs, thereby influencing the onset and progression of various diseases. Abnormal expression of specific miRNAs is closely associated with HF pathological processes, such as cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy. This abnormal expression can influence the pathological progression of HF through the regulation of miRNA expression. This article reviews the regulatory role of miRNAs in HF pathology discusses how CHM compounds and their active ingredients can ameliorate HF pathology through the regulation of miRNA expression. In conclusion, miRNAs represent promising therapeutic targets for HF, and CHM provides a novel strategy for treatment through the regulation of miRNA expression. Future studies must delve deeper into the precise mechanisms by which CHM modulates miRNAs and fully explore its potential for clinical application in HF treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liqiang Sun
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yirong Ma
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Wu X, Liu A, Lv X, Zhi X, Zeng X, Liu K, Zhao X, Jiang B, Jiang H, Li Y. Network pharmacology and experimental study of Angelica sinensis and Astragalus membranaceus capsules in treating heart failure. Heliyon 2024; 10:e38851. [PMID: 39640819 PMCID: PMC11620105 DOI: 10.1016/j.heliyon.2024.e38851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This study explores the mechanism of AAC in intervening heart failure (HF) using network pharmacology, molecular docking, and in vitro experimental validation. Methods The "active component-target" network and the "drug-disease target" protein interaction network were constructed using Cytoscape 3.9.0 and STRING Database. GO and KEGG enrichment analysis was performed using DAVID database. Then, the molecular docking of major compounds and target proteins was carried out using Autodock 1.5.7, and visualized with PyMOL 2.4.0 software. Finally, in vitro experimental validation was performed to explore the potential targets of AAC in treating HF. Results The study revealed significant targets implicated in a variety of GO bioprocess programs and KEGG signaling networks. The primary chemicals to have strong binding ability with target proteins in molecular docking, with quercetin having the best binding energy with MAPK at -6.72 Kcal/Mol.Validation of cellular experiments showed that AAC might reduce the apoptosis that doxorubicin causes in AC16 cells by controlling the levels of PIK3CA, AKT1, and MAPK1. Conclusion This study preliminarily reveals that AAC can treat HF through multiple components and multiple targets by using network pharmacology, molecular docking, and experimental validation.
Collapse
Affiliation(s)
- Xue Wu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiangting Zeng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery,The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - HuGang Jiang
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Shimizu M, Ohwada W, Yano T, Kouzu H, Sato T, Ogawa T, Osanami A, Toda Y, Nagahama H, Tanno M, Miura T, Kuno A, Furuhashi M. Contribution of MLKL to the development of doxorubicin-induced cardiomyopathy and its amelioration by rapamycin. J Pharmacol Sci 2024; 156:9-18. [PMID: 39068035 DOI: 10.1016/j.jphs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Necroptosis, necrosis characterized by RIPK3-MLKL activation, has been proposed as a mechanism of doxorubicin (DOX)-induced cardiomyopathy. We showed that rapamycin, an mTORC1 inhibitor, attenuates cardiomyocyte necroptosis. Here we examined role of MLKL in DOX-induced myocardial damage and protective effects of rapamycin. Cardiomyopathy was induced in mice by intraperitoneal injections of DOX (10 mg/kg, every other day) and followed for 7 days. DOX-treated mice showed a significant decline in LVEF assessed by cardiac MRI (45.5 ± 5.1% vs. 65.4 ± 4.2%), reduction in overall survival rates, and increases in myocardial RIPK3 and MLKL expression compared with those in vehicle-treated mice, and those changes were prevented by administration of rapamycin (0.25 mg/kg) before DOX injection. In immunohistochemical analyses, p-MLKL signals were detected in the cardiomyocytes of DOX-treated mice, and the signals were reduced by rapamycin. Mlkl+/- and Mlkl-/- mice were similarly resistant to DOX-induced cardiac dysfunction, indicating that a modest reduction in MLKL level is sufficient to prevent the development of DOX-induced cardiomyopathy. However, evidence of cardiomyocyte necrosis assessed by C9 immunostaining, presence of replacement fibrosis, and electron microscopic analyses was negligible in the myocardium of DOX-treated mice. Thus, MLKL-mediated signaling contributes to DOX-induced cardiac dysfunction primarily by a necrosis-independent mechanism, which is inhibitable by rapamycin.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Ohwada
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Hidemichi Kouzu
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshifumi Ogawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Arata Osanami
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Toda
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nagahama
- Division of Radioisotope Research, Biomedical Research, Education and Instrumentation Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaya Tanno
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | - Tetsuji Miura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Xu G, Xu Y, Zhang Y, Kao G, Li J. miR-1268a Regulates Fatty Acid Metabolism by Targeting CD36 in Angiotensin II-induced Heart Failure. Cell Biochem Biophys 2024; 82:1193-1201. [PMID: 38619643 DOI: 10.1007/s12013-024-01268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Multiple RNAs have been involved in the progress of heart failure. However, the role of miR-1268a in heart failure is still unclear. The differentially expressed miRNAs in heart failure was analyzed based on GEO dataset GSE104150. AC16 cells were treated with Angiotensin II (Ang II) to explore the role of miR-1268a in heart failure. The web tool miRWalk was used to analyze the targets of miR-1268a. miR-1268a was up-regulated in Ang II-treated AC16 cells. Ang II treatment markedly inhibited cell proliferation, ATP production, fatty acid (FA) uptake and enhanced levels of HF markers BNP and ST2, and oxidative stress of AC16 cells. Notably, inhibition of miR-1268a eliminated the inhibiting effect of Ang II on cell proliferation, ATP production, FA uptake and decreased levels of BNP an ST2, and oxidative stress on AC16 cells. Furthermore, CD36 was a target of miR-1268a and the CD36 level was decreased by miR-1268a mimics but increased by miR-1268a inhibitor in AC16 cells. miR-1268a regulates FA metabolism and oxidative stress in myocardial cells by targeting CD36 in heart failure.
Collapse
Affiliation(s)
- Gang Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Yi Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Ying Zhang
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Guoying Kao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| | - Jun Li
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| |
Collapse
|
5
|
Wang R, Huang K, Feng Y, Duan J, Ying H, Shi Q, Zhang Y, Jiang R, Yang L. Exo-miR-144-3p as a promising diagnostic biomarker for depressive symptoms in heart failure. Neurobiol Dis 2024; 192:106415. [PMID: 38266934 DOI: 10.1016/j.nbd.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
AIMS The prevalence of depression is higher in heart failure (HF) patients. Early screening of depressive symptoms in HF patients and timely intervention can help to improve patients' quality of life and prognosis. This study aims to explore diagnostic biomarkers by examining the expression profile of serum exosomal miRNAs in HF patients with depressive symptoms. METHODS Serum exosomal RNA was isolated and extracted from 6 HF patients with depressive symptoms (HF-DS) and 6 HF patients without depressive symptoms (HF-NDS). High-throughput sequencing was performed to obtain miRNA expression profiles and target genes were predicted for the screened differentially expressed miRNAs. Biological functions of the target genes were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, we collected serum exosomal RNAs from HF-DS (n = 20) and HF-NDS (n = 20). The differentially expressed miRNAs selected from the sequencing results were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Finally, the diagnostic efficacy of the differentially expressed exosomal miRNAs for HF-DS was evaluated by using receiver operating characteristic (ROC) curves. RESULTS A total of 19 significantly differentially expressed exosomal miRNAs were screened by high-throughput sequencing, consisting of 12 up-regulated and 7 down-regulated exosomal miRNAs. RT-qPCR validation demonstrated that the expression level of exo-miR-144-3p was significantly down-regulated in the HF-DS group, and the expression levels of exo-miR-625-3p and exo-miR-7856-5p were significantly up-regulated. In addition, the expression level of exo-miR-144-3p was negatively correlated with the severity of depressive symptoms in HF patients, and that the area under the curve (AUC) of exo-miR-144-3p for diagnosing HF-DS was 0.763. CONCLUSIONS In this study, we examined the serum exosomal miRNA expression profiles of HF patients with depressive symptoms and found that lower level of exo-miR-144-3p was associated with more severe depressive symptoms. Exo-miR-144-3p is a potential biomarker for the diagnosis of HF-DS.
Collapse
Affiliation(s)
- Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hangfeng Ying
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Qianyuan Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
6
|
Deng X, Liang J, Wang L, Niu L, Xiao J, Guo Q, Liu X, Xiao C. Whole Grain Proso Millet ( Panicum miliaceum L.) Attenuates Hyperglycemia in Type 2 Diabetic Mice: Involvement of miRNA Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37294881 DOI: 10.1021/acs.jafc.2c08184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the hypoglycemic effects and underlying mechanism of whole grain proso millet (Panicum miliaceum L.; WPM) on type 2 diabetes mellitus (T2DM). The results showed that WPM supplementation significantly reduced fasting blood glucose (FBG) and serum lipid levels in T2DM mice induced by a high-fat diet (HFD) combined with streptozotocin (STZ), with improved glucose tolerance, liver and kidney injury, and insulin resistance. In addition, WPM significantly inhibited the expression of gluconeogenesis-related genes G6pase, Pepck, Foxo1, and Pgc-1α. Further study by miRNA high-throughput sequencing revealed that WPM supplementation mainly altered the liver miRNA expression profile of T2DM mice by increasing the expression of miR-144-3p_R-1 and miR-423-5p, reducing the expression of miR-22-5p_R-1 and miR-30a-3p. GO and KEGG analyses showed that the target genes of these miRNAs were mainly enriched in the PI3K/AKT signaling pathway. WPM supplementation significantly increased the level of PI3K, p-AKT, and GSK3β in the liver of T2DM mice. Taken together, WPM exerts antidiabetic effects by improving the miRNA profile and activating the PI3K/AKT signaling pathway to inhibit gluconeogenesis. This study implies that PM can act as a dietary supplement to attenuate T2DM.
Collapse
Affiliation(s)
- Xu Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiayi Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lehui Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qianqian Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|