1
|
Hartman CB, Dube PS, Legoabe LJ, Van Pelt N, Matheeussen A, Caljon G, Beteck RM. Novel quinoline derivatives with broad-spectrum antiprotozoal activities. Arch Pharm (Weinheim) 2024; 357:e2300319. [PMID: 38396284 DOI: 10.1002/ardp.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.
Collapse
Affiliation(s)
- Carla B Hartman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Dube PS, Legoabe LJ, Jordaan A, Sigauke L, Warner DF, Beteck RM. Quinolone analogues of benzothiazinone: Synthesis, antitubercular structure-activity relationship and ADME profiling. Eur J Med Chem 2023; 258:115539. [PMID: 37321107 DOI: 10.1016/j.ejmech.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has an impermeable cell wall which gives it an inherent ability to resist many antibiotics. DprE1, an essential enzyme in Mtb cell wall synthesis, has been validated as a target for several TB drug candidates. The most potent and developmentally advanced DprE1 inhibitor, PBTZ169, is still undergoing clinical development. With high attrition rate, there is need to populate the development pipeline. Using a scaffold hopping strategy, we imprinted the benzenoid ring of PBTZ169 onto a quinolone nucleus. Twenty-two compounds were synthesised and screened for activity against Mtb, with six compounds exhibiting sub micromolar activity of MIC90 <0.244 μM. Compound 25 further demonstrated sub-micromolar activity when evaluated against wild-type and fluoroquinolone-resistant Mtb strains. This compound maintained its sub-micromolar activity against a DprE1 P116S mutant strain but showed a significant reduction in activity when tested against the DprE1 C387S mutant.
Collapse
Affiliation(s)
- Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lester Sigauke
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Dube P, Angula KT, Legoabe LJ, Jordaan A, Boitz Zarella JM, Warner DF, Doggett JS, Beteck RM. Quinolone-3-amidoalkanol: A New Class of Potent and Broad-Spectrum Antimicrobial Agent. ACS OMEGA 2023; 8:17086-17102. [PMID: 37214682 PMCID: PMC10193574 DOI: 10.1021/acsomega.3c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Herein, we describe 39 novel quinolone compounds bearing a hydrophilic amine chain and varied substituted benzyloxy units. These compounds demonstrate broad-spectrum activities against acid-fast bacterium, Gram-positive and -negative bacteria, fungi, and leishmania parasite. Compound 30 maintained antitubercular activity against moxifloxacin-, isoniazid-, and rifampicin-resistant Mycobacterium tuberculosis, while 37 exhibited low micromolar activities (<1 μg/mL) against World Health Organization (WHO) critical pathogens: Cryptococcus neoformans, Acinetobacter baumannii, and Pseudomonas aeruginosa. Compounds in this study are metabolically robust, demonstrating % remnant of >98% after 30 min in the presence of human, rat, and mouse liver microsomes. Several compounds thus reported here are promising leads for the treatment of diseases caused by infectious agents.
Collapse
Affiliation(s)
- Phelelisiwe
S. Dube
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Klaudia T. Angula
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Lesetja J. Legoabe
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Jan M. Boitz Zarella
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Wellcome
Centre for Infectious Diseases Research in Africa (CIDRI-Africa),
Faculty of Health Sciences, University of
Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - J. Stone Doggett
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Richard M. Beteck
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|