1
|
Feng Y, Zhang Z, Zhang H, Guo H, Tan C, Xu N, Tan Y, Jiang Y. Aptamer Proteolysis-Targeting Chimeras (PROTACs): A Novel Strategy to Combat Drug Resistance in Estrogen Receptor α-Positive Breast Cancer. ACS Pharmacol Transl Sci 2024; 7:3945-3954. [PMID: 39698261 PMCID: PMC11650730 DOI: 10.1021/acsptsci.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer with positive expression of estrogen receptor α (ERα+) accounts for 70% of breast cancer cases, whose predominant treatment is currently endocrine therapy. The main strategy of endocrine therapy for ERα+ breast cancer is to inhibit the ERα signaling pathway and downregulate ERα levels, which often results in mutations in the ligand-binding domain (LBD) of ERα, leading to significant resistance to subsequent treatment in patients. To combat drug resistance, we first proposed a novel aptamer PROTAC strategy through specifically targeted degradation of ERα via targeting the DNA-binding domain (DBD) of ERα. We proved that this strategy is capable of targeting ERα for degradation through ubiquitination, leading to the inhibition of proliferation in ERα+ breast cancer cells and tamoxifen-resistant breast cancer cells. Furthermore, we investigated the mechanisms involved in overcoming resistance. By circumventing drug resistance associated with LBD mutations in ERα, our approach provides a promising avenue for the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Ying Feng
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhilin Zhang
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haowei Zhang
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui Guo
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- School
of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ying Tan
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuyang Jiang
- State
Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
2
|
Magrassi L, Pinton G, Luzzi S, Comincini S, Scravaglieri A, Gigliotti V, Bernardoni BL, D’Agostino I, Juretich F, La Motta C, Garavaglia S. A New Vista of Aldehyde Dehydrogenase 1A3 (ALDH1A3): New Specific Inhibitors and Activity-Based Probes Targeting ALDH1A3 Dependent Pathways in Glioblastoma, Mesothelioma and Other Cancers. Cancers (Basel) 2024; 16:2397. [PMID: 39001459 PMCID: PMC11240489 DOI: 10.3390/cancers16132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Aldehyde dehydrogenases of the subfamily 1A (ALDH1A) are enzymes necessary for the oxidation of all-trans or 9-cis retinal to retinoic acid (RA). Retinoic acid and its derivatives are important for normal development and maintenance of epithelia, reproduction, memory, and immune function in adults. Moreover, in recent years, it has been demonstrated that ALDH1A members are also expressed and functional in several human cancers where their role is not limited to the synthesis of RA. Here, we review the current knowledge about ALDH1A3, one of the 1A isoforms, in cancers with an emphasis on two of the deadliest tumors that affect humans: glioblastoma multiforme and mesothelioma. In both tumors, ALDH1A3 is considered a negative prognostic factor, and its level correlates with excessive proliferation, chemoresistance, and invasiveness. We also review the recent attempts to develop both ALDH1A3-selective inhibitors for cancer therapy and ALDH1A3-specific fluorescent substrates for fluorescence-guided tumor resection.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
- Istituto di Genetica Molecolare—CNR, 27100 Pavia, Italy
| | - Giulia Pinton
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Sabino Luzzi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Sergio Comincini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Andrea Scravaglieri
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Valentina Gigliotti
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Bianca Laura Bernardoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Francesca Juretich
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Silvia Garavaglia
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| |
Collapse
|
3
|
The Expanding Role of Cancer Stem Cell Marker ALDH1A3 in Cancer and Beyond. Cancers (Basel) 2023; 15:cancers15020492. [PMID: 36672441 PMCID: PMC9857290 DOI: 10.3390/cancers15020492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Aldehyde dehydrogenase 1A3 (ALDH1A3) is one of 19 ALDH enzymes expressed in humans, and it is critical in the production of hormone receptor ligand retinoic acid (RA). We review the role of ALDH1A3 in normal physiology, its identification as a cancer stem cell marker, and its modes of action in cancer and other diseases. ALDH1A3 is often over-expressed in cancer and promotes tumor growth, metastasis, and chemoresistance by altering gene expression, cell signaling pathways, and glycometabolism. The increased levels of ALDH1A3 in cancer occur due to genetic amplification, epigenetic modifications, post-transcriptional regulation, and post-translational modification. Finally, we review the potential of targeting ALDH1A3, with both general ALDH inhibitors and small molecules specifically designed to inhibit ALDH1A3 activity.
Collapse
|