1
|
Wang J, Liu Y, Wu Y, Yang K, Yang K, Yan L, Feng L. Anti-inflammatory effects of icariin in the acute and chronic phases of the mouse pilocarpine model of epilepsy. Eur J Pharmacol 2023; 960:176141. [PMID: 37866741 DOI: 10.1016/j.ejphar.2023.176141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Neuroinflammation mediated by microglia made a significant contribution in the pathophysiology of epilepsy. Icariin (ICA), a bioactive ingredient isolated from Epimedium, has been shown to present both antioxidant and anti-inflammatory properties. This study was to explore the potential therapeutic effects of icariin on mouse pilocarpine model of epilepsy and its underlying mechanisms in vivo and in vitro. To this end, we firstly measured the serum concentrations of the proinflammatory cytokines IL-1β and IL-6 from patients with temporal lobe epilepsy and found that patients with a higher seizure frequency showed correspondingly higher inflammatory reaction. Mouse pharmacokinetic study, transmembrane transportation assay, and cell viability assay collectively demonstrated that ICA was able to cross the blood-brain barrier and has good biocompatibility. The acute and chronic epilepsy models were next established in a pilocarpine mouse model of acquired epilepsy. Icariin has been identified that it could cross the blood-brain barrier and enter the hippocampus to exhibit therapeutic effects. ICA treatment dramatically promoted microglial polarization to the M2 phenotype in epilepsy mice both in the acute and chronic phases. Reduced release of M1-associated proinflammatory factors, such as IL-1β and IL-6, corroborates the altered glial cell polarization. Furthermore, ICA alleviated seizure intensity and mortality in acute phase epileptic mice. Models in the chronic group also showed improved general condition, cognition ability, and memory function after ICA treatment. Taken together, our research strongly suggested that icariin has the potential to treat epilepsy via inhibiting neuroinflammation by promoting microglial polarization to the M2 phenotype.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China
| | - Yunyi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yuanxia Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Ke Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China
| | - Kaiyi Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China
| | - Luzhe Yan
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, China; Department of Neurology, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, Jiangxi, 330000, China.
| |
Collapse
|
2
|
Zhao W, Yu HH, Meng WW, Liu AM, Zhang BX, Wang Y, Li J, Wang L, Fang YF. Icariin restrains NLRP3 inflammasome-mediated Th2 immune responses and ameliorates atopic dermatitis through modulating a novel lncRNA MALAT1/miR-124-3p axis. PHARMACEUTICAL BIOLOGY 2023; 61:1249-1259. [PMID: 37602424 PMCID: PMC10444017 DOI: 10.1080/13880209.2023.2244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/13/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
CONTEXT Atopic dermatitis (AD) is a common inflammatory skin disease characterized with hyperactivation of type 2 T helper (Th2) immune responses. Icariin is a flavonoid glucoside with anti-inflammatory activities, which has been used to treat multiple diseases. OBJECTIVE The present study investigates the underlying mechanisms by which icariin regulates Th2 responses and AD development. MATERIALS AND METHODS BALB/c mice were induced by DNFB to establish AD models, and injected with or without 10 mg/kg icariin for 2 weeks (i.p., daily). CD4+T cells were induced by Th2 condition to simulate AD in vitro, and also treated with or without 100 µM icariin. RESULTS Icariin ameliorated AD-like skin lesion, manifested as a significant decrease in dermatitis scores (from 8.00 ± 1.00 to 3.67 ± 0.58), serum IgE levels (from 3119.15 ± 241.81 to 948.55 ± 182.51 ng/mL), epidermal thickness (from 93.86 ± 4.61 to 42.67 ± 2.48 µm) and infiltration of mast cells (from 60.67 ± 3.21 cells to 36.00 ± 2.65 cells). Also, icariin inactivated NLRP3 inflammasome, inhibited Th2 skewing, reduced lncRNA MALAT1 expression, but elevated miR-124-3p expression in vivo and in vitro. MALAT1 increased NLRP3 expression through targeting miR-124-3p. Knockdown of MALAT1 repressed NLRP3 inflammasome activation and mitigated Th1/Th2 imbalance in Th2-conditioned CD4+T cells, whereas both MALAT1 overexpression and miR-124-3p inhibition ablated the inhibitory effects of icariin on Th2 immune responses. DISCUSSION AND CONCLUSIONS The findings further improve our understanding of the mechanism by which icariin affects AD progression, and highlights the potential of icariin in the treatment of AD.
Collapse
Affiliation(s)
- Wei Zhao
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huan-Huan Yu
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei-Wei Meng
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ai-Min Liu
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bu-Xin Zhang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Li
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Wang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-Fu Fang
- Dermatology Department, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Long L, Wang X, Lei Y, Guo S, Wang C, Dai W, Lin B, Xie M, Xu H, Li S. Icariin: A Potential Alternative Against Osteoporosis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder characterized by increased fragility and fracture risk as s result of reduced bone mineral density and microstructural destruction and caused a heavy burden on families and society. Current medicines, on the other hand, have some limitations, with side effects and doubts regarding long-term efficacy being highlighted. Studies seeking for natural constituents as potential treatment options therefore come into focus. Icariin is a phytochemical derived from a traditional Chinese medicine, Herba epimedium, that has been used to treat orthopedic disorders in ancient China for thousands of years, including osteoporosis, osteoarthritis, and fracture. Icariin belongs to a category of prenylated flavonoids and has been shown to help reduce osteoporosis bone loss while having relatively low side effects. Icariin's anti-osteoporosis properties manifest in a variety of ways, like promoting osteogenesis, suppressing osteoclastogenesis and bone resorption, regulating migration, proliferation, and differentiation of mesenchymal stem cells, enhancing angiogenesis, anti-inflammation, and antioxidation. These procedures entail a slew of critical signaling pathways, such as PPARγ, ERα/AKT/β-catenin, and MAPK. Therefore, icariin can be an applicable alternative to improve osteoporosis although the underlying mechanisms have yet to be fully understood. In this study, we searched using the terms “icariin” and “osteoporosis,” and included 64 articles meeting the inclusion criteria and reviewed the research of icariin in anti-osteoporosis over the last 10 years, and discussed new prospects for future study. Therefore, this review may provide some references for further studies.
Collapse
Affiliation(s)
- Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yang Lei
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Birong Lin
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Mingzhong Xie
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Department of Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Yang W, Han YH, Wang HC, Lu CT, Yu XC, Zhao YZ. Intradermal injection of icariin-HP-β-cyclodextrin improved traumatic brain injury via the trigeminal epineurium-brain dura pathway. J Drug Target 2022; 30:557-566. [PMID: 35023434 DOI: 10.1080/1061186x.2021.2023159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lower bioavailability after oral administration limited icariin applications in Central Nervous System. Icariin/HP-β-cyclodextrin (HP-β-CD) inclusion complex was prepared for acute severe opening traumatic brain injury (TBI) via facial intradermal(i.d.) in mystacial pad. After fluid percussion-induced TBI, icariin/HP-β-CD at 0.4 mg/kg i.d. preserved more neurons and oligodendrocytes than intranasal injection (i.n.) or intravenous injection via tail vein (i.v.) and decreased microglia and astrocyte activation. Icariin/HP-β-CD i.d. reduced apoptosis in cortical penumbra while i.n. and i.v. showed weak or no effects. Icariin/HP-β-CD i.d. reduced Evans blue leakage and altered CD34, ZO-1, Claudin-5 and beta-catenin expression after TBI. Moreover, icariin/HP-β-CD promoted human umbilical vein endothelial cells proliferation. Thus, Icariin/HP-β-CD i.d. improved TBI, including blood brain barrier opening. Fluorescein 5-isothiocyanate (FITC) and 3,3'-Dioctadecyloxacarbocyanine perchlorate (DiOC18(3)) mimic HP-β-CD and icariin respectively. FITC and DiOC18(3) were similarly delivered to trigeminal epineurium, perineurium and perivascular spaces or tissues, caudal dura mater and scattered in trigeminal fasciculus, indicating that icariin/HP-β-CD was delivered to brain via trigeminal nerve-dura mater-brain pathways. In sum, intradermal injection in mystacial pad might delivered icariin/HP-β-CD to brain and icariin/HP-β-CD improved acute severe opening TBI.
Collapse
Affiliation(s)
- Wei Yang
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Yong-Hui Han
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Heng-Cai Wang
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Cui-Tao Lu
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Xi-Chong Yu
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| | - Ying-Zheng Zhao
- School of pharmaceutics sciences, Wenzhou medical university, Wenzhou city, Zhejiang province, China
| |
Collapse
|
5
|
Liu X, Liu Z, Miao Y, Wang L, Yin H. Sex hormone-like Effects of Icariin on T-cells immune modulation in spontaneously hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113717. [PMID: 33359002 DOI: 10.1016/j.jep.2020.113717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium brevicornu Maxim as a Chinese herb, is recommended for the treatment of menopausal women with hypertension for 50 years. Icariin, as the main hydrophilic ingredient of Epimedium brevicornu Maxim, has been proven to be a plant sex hormone and lower blood pressure down. Here, we hypothesized that Icariin can regulate T cells differentiation which leads to the blood pressure decrease in castrated SHR rats. AIM OF THE STUDY The present study aimed to investigate the effects of the exogenous estrogen, androgen and Icariin on T-cell modulation in hypertension. MATERIALS AND METHODS Two weeks after castration, both male and female SHR rats were given estradiol, testosterone, and Icariin intervention respectively. Body weight, blood pressure, and heart rate were tested weekly. After six weeks, proportion of T helper cells (Th), cytotoxic T cells (Tc), and regulatory T cells (Tregs) in both peripheral blood mononuclear cells (PBMCs) and splenocytes were tested by flowcytometry. Serum levels of estrogen, testosterone, AngII, TNF-α, IL-17 were tested by Elisa. Aortic arches were isolated for HE and Masson staining. The expressions of ERβ and AR in aorta were tested by Western-blot. RESULTS In both male and female SHR rats, we found that Icariin and estradiol lower blood pressure, but testosterone elevates blood pressure. Similar as testosterone, Icariin can attenuate Tc and Th proportions and elevate Tregs proportion in both peripheral blood and splenocyte in male SHR, which can be blunt by flutamide. Besides, Icariin performs similar function as estradiol that attenuates Tc proportions and elevates Tregs proportion in both peripheral blood and splenocytes in female SHR, which leads to the lower blood pressure and can be partly blunt by fulvestrant. Testosterone increases AngII and TNF-α levels in serum, leading to the higher blood pressure in both male and female SHR rats. CONCLUSION These results verified that Icariin, as a plant sex hormone, can regulate T cells differentiation related to blood pressure decrease in SHR rats.
Collapse
Affiliation(s)
- Xin Liu
- From the Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China, XL.
| | - Zekun Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA, ZKL.
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China, YM.
| | - Lin Wang
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China, LW.
| | - Huijun Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, HJY.
| |
Collapse
|
6
|
Xiong W, Ma H, Zhang Z, Jin M, Wang J, Xu Y, Wang Z. Icariin enhances intestinal barrier function by inhibiting NF-κB signaling pathways and modulating gut microbiota in a piglet model. RSC Adv 2019; 9:37947-37956. [PMID: 35541789 PMCID: PMC9075722 DOI: 10.1039/c9ra07176h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/06/2019] [Indexed: 01/13/2023] Open
Abstract
This study investigated the effects of icariin on intestinal barrier function and its underlying mechanisms. The icariin diet improved the growth rate and reduced the diarrhea rate in piglets. The icariin diet also reduced the levels of plasma and colonic IL-1β, -6, -8, TNF-α, and MDA but increased the plasma and colonic activity of SOD, GPx, and CAT. Besides, the levels of plasma and colonic endotoxin, DAO, d-lactate, and zonulin were markedly reduced in icariin groups. Meanwhile, dietary intake icariin significantly increased the gene and protein expression of ZO-1, Occludin, and Claudin-1 in the colon. Furthermore, the gene and protein expressions of TLR4, MyD88, and NF-κB were significantly inhibited in the colon of icariin fed piglets. The intestinal microbiota composition and function was changed by the icariin diet. Collectively, these findings increase our understanding of the mechanisms by which ICA enhances the intestinal barrier function and promotes the development of nutritional intervention strategies.
Collapse
Affiliation(s)
- Wen Xiong
- College of Animal Science and Technology, Southwest University Chongqing China
| | - Haoyue Ma
- College of Parmaceutical Sciences, Southwest University Chongqing China
| | - Zhu Zhang
- College of Animal Science and Technology, Southwest University Chongqing China
| | - Meilan Jin
- College of Animal Science and Technology, Southwest University Chongqing China
| | - Jian Wang
- College of Animal Science and Technology, Southwest University Chongqing China
| | - Yuwei Xu
- College of Animal Science and Technology, Southwest University Chongqing China
| | - Zili Wang
- College of Animal Science and Technology, Southwest University Chongqing China
| |
Collapse
|
7
|
Jia G, Zhang Y, Li W, Dai H. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti‑neuroinflammatory and anti‑apoptotic properties. Mol Med Rep 2019; 20:3433-3439. [PMID: 31432160 DOI: 10.3892/mmr.2019.10537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/12/2019] [Indexed: 11/05/2022] Open
Abstract
Icariin is a type of flavonoid derived from the Chinese herbal plant Epimedium sagittatum Maxim. Mounting evidence has confirmed the beneficial effects of icariin in neurological diseases, including spinal cord injury (SCI). The aim of the present study was to investigate the neuroprotective effects of icariin in SCI and the precise underlying mechanism. The weight‑drop injury technique was applied to construct an SCI model in Sprague‑Dawley rats. Icariin (35 µmol/kg) was administered orally once daily for 7 consecutive days to examine its neuroprotective effects. The Basso, Beattie and Bresnahan scoring system was used for neurobehavioral evaluation. The water content of the injured spinal cord was measured via the dry‑wet weight method. Biochemical indices were examined by colorimetric assay using commercially available kits. Western blot analysis was used to detect protein expression. Icariin significantly accelerated the recovery of the locomotor function of SCI rats and decreased spinal cord water content. Icariin also attenuated SCI‑induced pro‑apoptotic protein expression and activity, while it increased anti‑apoptotic protein levels. In addition, icariin alleviated oxidative stress in SCI rats and decreased the levels of inflammatory molecules, including interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, nitric oxide, nuclear factor‑κB and inducible nitric oxide synthase, and increased the expression of anti‑inflammatory proteins, including NADPH‑quinone oxidoreductase‑1, heme oxygenase‑1 and nuclear factor erythroid 2‑related factor 2 in the injured spinal cord. Therefore, icariin treatment accelerated locomotor function recovery in SCI, and its protective effects may be mediated via its antioxidant, anti‑inflammatory and anti‑apoptotic bioactivity.
Collapse
Affiliation(s)
- Guizhi Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuqiang Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongliang Dai
- School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|