1
|
Chen H, Yang J, Yang Q, Jia Y, Guo X. Protein prenylation in mechanotransduction: implications for disease and therapy. Trends Pharmacol Sci 2025:S0165-6147(24)00274-8. [PMID: 39818521 DOI: 10.1016/j.tips.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins. This review provides the first comprehensive examination of the connections between prenylation and mechanotransduction, exploring both the mechanistic details and its impact on mechanosensitive cellular behaviors. We further highlight recent evidence linking protein prenylation to diseases associated with disrupted mechanical homeostasis, and outline emerging targeted therapeutic strategies.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingzhen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an 710004, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
Li Z, Zhang J, Wang M, Qiu F, Jin C, Fu G. Expression of farnesyl pyrophosphate synthase is increased in diabetic cardiomyopathy. Cell Biol Int 2021; 45:1393-1403. [PMID: 33595160 DOI: 10.1002/cbin.11573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Chongyin Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
3
|
Key Enzymes for the Mevalonate Pathway in the Cardiovascular System. J Cardiovasc Pharmacol 2021; 77:142-152. [PMID: 33538531 DOI: 10.1097/fjc.0000000000000952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Isoprenylation is an important post-transcriptional modification of small GTPases required for their activation and function. Isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate, are indispensable for isoprenylation by serving as donors of a prenyl moiety to small G proteins. In the human body, isoprenoids are mainly generated by the mevalonate pathway (also known as the cholesterol-synthesis pathway). The hydroxymethylglutaryl coenzyme A reductase catalyzes the first rate-limiting steps of the mevalonate pathway, and its inhibitor (statins) are widely used as lipid-lowering agents. In addition, the FPP synthase is also of critical importance for the regulation of the isoprenoids production, for which the inhibitor is mainly used in the treatment of osteoporosis. Synthetic FPP can be further used to generate geranylgeranyl pyrophosphate and cholesterol. Recent studies suggest a role for isoprenoids in the genesis and development of cardiovascular disorders, such as pathological cardiac hypertrophy, fibrosis, endothelial dysfunction, and fibrotic responses of smooth-muscle cells. Furthermore, statins and FPP synthase inhibitors have also been applied for the management of heart failure and other cardiovascular diseases rather than their clinical use for hyperlipidemia or bone diseases. In this review, we focus on the function of several critical enzymes, including hydroxymethylglutaryl coenzyme A reductase, FPP synthase, farnesyltransferase, and geranylgeranyltransferase in the mevalonate pathway which are involved in regulating the generation of isoprenoids and isoprenylation of small GTPases, and their pathophysiological role in the cardiovascular system. Moreover, we summarize recent research into applications of statins and the FPP synthase inhibitors to treat cardiovascular diseases, rather than for their traditional indications respectively.
Collapse
|
4
|
Gao J, Shao K, Chen X, Li Z, Liu Z, Yu Z, Aung LHH, Wang Y, Li P. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. J Mol Cell Cardiol 2020; 138:49-58. [DOI: 10.1016/j.yjmcc.2019.11.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
|
5
|
FPPS mediates TGF-β1-induced non-small cell lung cancer cell invasion and the EMT process via the RhoA/Rock1 pathway. Biochem Biophys Res Commun 2018; 496:536-541. [PMID: 29337059 DOI: 10.1016/j.bbrc.2018.01.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023]
Abstract
Farnesyl pyrophosphate synthase (FPPS), a key enzyme in the mevalonate pathway, was recently shown to play a role in cancer progression. However, its role in non-small cell lung cancer (NSCLC) metastasis and the underlying mechanism remain unclear. In this study, FPPS expression was significantly correlated with TNM stage, and metastasis. Inhibition or knockdown of FPPS blocked TGF-β1-induced cell invasion and epithelial-to-mesenchymal transition (EMT) process. FPPS expression of FPPS was induced by TGF-β1 and FPPS promoted cell invasion and EMT via the RhoA/Rock1 pathway. In conclusion, FPPS mediates TGF-β1-induced lung cancer cell invasion and EMT via the RhoA/Rock1 pathway. These findings suggest new treatment strategies to reduce mortality associated with metastasis in patients with NSCLC.
Collapse
|
6
|
Li Z, Shen Z, Du L, He J, Chen S, Zhang J, Luan Y, Fu G. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin II. Am J Transl Res 2016; 8:5386-5398. [PMID: 28078010 PMCID: PMC5209490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/06/2016] [Indexed: 06/06/2023]
Abstract
Angiotesin II (Ang II) plays an important role in cardiac remodeling. Fibroblast growth factor inducible-14 (Fn14) is the smallest member of the tumor necrosis factor superfamily of receptors. Currently, little is known about the functional role of Fn14 in the heart. Chiefly, we observe the up-regulation of extracellular matrix in in vivo model. We therefore assess the expression and regulation of Fn14 in cardiomyocytes and in vivo models induced by Ang II. In order to study the regulation of Fn14, cardiac remodeling was established in rats and neonatal cardiomyocytes were used in in vitro model. As well, Ang II is able to strongly induce Fn14 expression in in vivo and in vitro models. Fn14 is mediated via RhoA pathways, since siRNA against RhoA prevented the expression of Fn14 in cardiomyocytes. Pretreatment of cardiomyoctes with siRNA against NF-κB and IκBα also decreased Fn14 expression induced by Ang II. We here describe for the first time Ang II regulation of Fn14 in in vivo and in vitro models via RhoA, NF-κB and NF-κB driven gene signaling pathway. In conclusion, Fn14 may be important in regulating the process of cardiac remodeling induced by Ang II.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Lailing Du
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jialin He
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| |
Collapse
|
7
|
Jiang W, Li Z, Zhao W, Chen H, Wu Y, Wang Y, Shen Z, He J, Chen S, Zhang J, Fu G. Breviscapine attenuatted contrast medium-induced nephropathy via PKC/Akt/MAPK signalling in diabetic mice. Am J Transl Res 2016; 8:329-341. [PMID: 27158329 PMCID: PMC4846886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
Contrast medium-induced nephropathy (CIN) remains a major cause of iatrogenic, drug-induced renal injury. Recent studies reveal that Breviscapine can ameliorate diabetic nephropathy in mice. Yet it remains unknown if Breviscapine could reduce CIN in diabetic mice. In this study, male C57/BL6J mice were randomly divided into 7 groups: control, diabetes mellitus, CIN, diabetes mellitus+CIN, diabetes mellitus+Breviscapine, CIN+Breviscapine and diabetes mellitus+CIN+Breviscapine. Model of CIN was induced by tail intravenous administration of iopromide and model of diabetes mellitus was induced by Streptozotocin intraperitoneally. Breviscapine was administered intragastrically for 4 weeks. Renal function parameters, kidney histology, markers of renal fibrosis, phosphorylation of protein kinase C/Akt/mitogen activated protein kinases were measured by western blot. We found out that diabetes mellitus aggravated CIN damage. Renal histological analysis showed Breviscapine reduced of renal fibrosis and tubular damage. Breviscapine was also shown markedly to ameliorate CIN fibrotic markers expression, reduced proteinuria and serum creatinine. Furthermore, Breviscapine decreased phosphorylation of PKCβII, Akt, JNK1/2 and p38. Therefore, Breviscapine treatment could ameliorate the development of CIN in diabetic mice, which was partly attributed to its suppression of renal fibrosis via phosphorylation of PKCβII/Akt/JNK1/2/p38 signalling.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Wei Zhao
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Hao Chen
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Youyang Wu
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Yi Wang
- Department of Cardiology, The Third Clinical Institute Affiliated To Wenzhou Medical UniversityNo. 57 Canghou Street, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jialin He
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityNo. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| |
Collapse
|
8
|
Ye Y, Lv X, Wang MH, Zhu J, Chen SQ, Jiang CY, Fu GS. Alendronate prevents angiotensin II-induced collagen I production through geranylgeranylation-dependent RhoA/Rho kinase activation in cardiac fibroblasts. J Pharmacol Sci 2015; 129:205-9. [DOI: 10.1016/j.jphs.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/23/2015] [Accepted: 10/16/2015] [Indexed: 01/03/2023] Open
|