1
|
Derluyn N, Foucart V, Verce M, Abdo R, Vaudoisey L, Lipski D, Flamand V, Everard A, Bruyns C, Willermain F. High salt diet alleviates disease severity in native experimental autoimmune uveitis. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1370374. [PMID: 38984146 PMCID: PMC11182228 DOI: 10.3389/fopht.2024.1370374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/19/2024] [Indexed: 07/11/2024]
Abstract
Background Recent studies reported a link between high salt diet (HSD) and clinical exacerbation in mouse models of autoimmune diseases, mainly through the induction of pathogenic Th17 cells and/or HSD-induced dysbiosis. However, the topic remains controversial and not fully understood. Purpose In this study, we investigated the effects of HSD on the development of experimental autoimmune uveitis (EAU) in C57BL/6J mice. Methods and results Unexpectedly, our data showed a significant attenuating effect of HSD on disease severity of native EAU, induced by direct immunization with IRBP peptide. That said, HSD had no effect on EAU disease severity induced by adoptive transfer of semi-purified auto-reactive IRBP-specific T lymphocytes. Accordingly, HSD did not affect IRBP-specific systemic afferent immune response as attested by no HSD-linked changes in T lymphocytes proliferation, cytokine production and Treg proportion. Gut microbiota analysis from cecal samples in naïve and EAU mice demonstrated that HSD affected differentially α-diversity between groups, whereas β-diversity was significantly modified in all groups. Unknown Tannerellaceae was the only taxon associated to HSD exposure in all treatment groups. Interestingly, a significantly higher abundance of unknown Gastranaerophilales, with potential anti-inflammatory properties, appeared in HSD-fed native EAU mice, only. Discussion In conclusion, our study suggests a possible impact of HSD on gut microbiota composition and consequently on development and clinical severity of EAU. Further studies are required to investigate the potential beneficial role of Gastranaerophilales in EAU.
Collapse
Affiliation(s)
- Naomi Derluyn
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Foucart
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Rami Abdo
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Louis Vaudoisey
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Deborah Lipski
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, Hôpital Universitaire de Bruxelles (HUB) - Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Wavre, Belgium
| | - Catherine Bruyns
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - François Willermain
- Institute of Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Ophthalmology, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Wang F, Cai YJ, Ma X, Wang N, Wu ZB, Sun Y, Xu YX, Yang H, Liu TT, Xia Q, Yu Z, Zhu DF. Synaptic loss in a mouse model of euthyroid Hashimoto's thyroiditis: possible involvement of the microglia. BMC Neurosci 2022; 23:25. [PMID: 35468730 PMCID: PMC9036731 DOI: 10.1186/s12868-022-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Hashimoto’s thyroiditis (HT) is an autoimmune illness that renders individuals vulnerable to neuropsychopathology even in the euthyroid state, the mechanisms involved remain unclear. We hypothesized that activated microglia might disrupt synapses, resulting in cognitive disturbance in the context of euthyroid HT, and designed the present study to test this hypothesis. Methods Experimental HT model was induced by immunizing NOD mice with thyroglobulin and adjuvant twice. Morris Water Maze was measured to determine mice spatial learning and memory. The synaptic parameters such as the synaptic density, synaptic ultrastructure and synaptic-markers (SYN and PSD95) as well as the interactions of microglia with synapses were also determined. Results HT mice had poorer performance in Morris Water Maze than controls. Concurrently, HT resulted in a significant reduction in synapse density and ultrastructure damage, along with decreased synaptic puncta visualized by immunostaining with synaptophysin and PSD-95. In parallel, frontal activated microglia in euthyroid HT mice showed increased engulfment of PSD95 and EM revealed that the synaptic structures were visible within the microglia. These functional alterations in microglia corresponded to structural increases in their attachment to neuronal perikarya and a reduction in presynaptic terminals covering the neurons. Conclusion Our results provide initial evidence that HT can induce synaptic loss in the euthyroid state with deficits might be attributable to activated microglia, which may underlie the deleterious effects of HT on spatial learning and memory. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00710-2.
Collapse
Affiliation(s)
- Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yao-Jun Cai
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiao Ma
- Department of Respiratoration, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, China
| | - Nan Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhang-Bi Wu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Sun
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yong-Xia Xu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hao Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Tian-Tian Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qin Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - De-Fa Zhu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Heras-Garvin A, Refolo V, Reindl M, Wenning GK, Stefanova N. High-salt diet does not boost neuroinflammation and neurodegeneration in a model of α-synucleinopathy. J Neuroinflammation 2020; 17:35. [PMID: 31980040 PMCID: PMC6982394 DOI: 10.1186/s12974-020-1714-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
AIM Pre-clinical studies in models of multiple sclerosis and other inflammatory disorders suggest that high-salt diet may induce activation of the immune system and potentiate inflammation. However, high-salt diet constitutes a common non-pharmacological intervention to treat autonomic problems in synucleinopathies such as Parkinson's disease and multiple system atrophy. Since neuroinflammation plays an important pathogenic role in these neurodegenerative disorders, we asked here whether high-salt diet may aggravate the disease phenotype in a transgenic model of multiple system atrophy. METHODS Nine-month-old PLP-hαSyn and matched wildtype mice received normal or high-salt diet for a period of 3 months. Behavioral, histological, and molecular analyses were performed to evaluate the effect of high-salt diet on motor decline, neuroinflammation, neurodegeneration, and α-synuclein accumulation in these mice. RESULTS Brain subregion-specific molecular and histological analyses showed no deleterious effects of high-salt diet on the level of microglial activation. Moreover, neuroinflammation-related cytokines and chemokines, T cell recruitment or astrogliosis were unaffected by high-salt diet exposure. Behavioral testing showed no effect of diet on motor decline. High-salt diet was not related to the deterioration of neurodegeneration or α-synuclein accumulation in PLP-hαSyn mice. CONCLUSIONS Here, we demonstrate that high-salt diet does not aggravate neuroinflammation and neurodegeneration in PLP-hαSyn mice. Our findings discard a deleterious pro-neuroinflammatory effect of high-salt diet in multiple system atrophy.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Violetta Refolo
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Markus Reindl
- Department of Neurology, Neuroimmunology Research Group, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Huehnchen P, Boehmerle W, Endres M. High salt diet ameliorates functional, electrophysiological and histological characteristics of murine spontaneous autoimmune polyneuropathy. Neurobiol Dis 2018; 124:240-247. [PMID: 30468863 DOI: 10.1016/j.nbd.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It was previously reported that high salt dietary conditions can drive autoimmunity and worsen severity and symptoms of autoimmune diseases. Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a common autoimmune condition of the peripheral nervous system which leads to progressive paralysis and sensory deficits due to a demyelination and secondary axonal loss of peripheral nerves. We used a previously described model with a knockout of CD86 in non-obese diabetic mice (CD86-/- NOD), which results in the spontaneous development of an autoimmune peripheral neuropathy similar to CIDP and investigated the influence of a high salt diet on functional impairment, electrophysiological parameters, demyelination and neuroinflammation in these mice. METHODS At seven weeks of age, asymptomatic female CD86-/- NOD mice were randomly assigned to a normal or high salt diet containing 4% sodium chloride in food and 1% in water. The diet was continued for a total of 30 weeks. RESULTS Mice on the high salt diet showed a delayed onset of clinical symptoms and an ameliorated disease course with a reduced decline of locomotor function. Furthermore, electrophysiological parameters of neuropathy and demyelination were attenuated in mice on the high salt diet, which was confirmed with histological analysis. Additionally, we observed a reduced immune cell infiltration of sciatic nerves in mice which had received the high salt diet. CONCLUSIONS We demonstrate beneficial effects of high salt diet regarding disease progression, functional, electrophysiological and histological parameters in a transgenic mouse model of spontaneous autoimmune neuropathy.
Collapse
Affiliation(s)
- Petra Huehnchen
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany.
| | - Wolfgang Boehmerle
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Stroke Resarch Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
5
|
Beta-adducin and sodium–calcium exchanger 1 gene variants are associated with systemic lupus erythematosus and lupus nephritis. Rheumatol Int 2015; 35:1975-83. [DOI: 10.1007/s00296-015-3298-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/25/2015] [Indexed: 01/28/2023]
|