1
|
Mejía-Guarnizo LV, Monroy-Camacho PS, Turizo-Smith AD, Rodríguez-García JA. The role of immune checkpoints in antitumor response: a potential antitumor immunotherapy. Front Immunol 2023; 14:1298571. [PMID: 38162657 PMCID: PMC10757365 DOI: 10.3389/fimmu.2023.1298571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Immunotherapy aims to stimulate the immune system to inhibit tumor growth or prevent metastases. Tumor cells primarily employ altered expression of human leukocyte antigen (HLA) as a mechanism to avoid immune recognition and antitumor immune response. The antitumor immune response is primarily mediated by CD8+ cytotoxic T cells (CTLs) and natural killer (NK) cells, which plays a key role in the overall anti-tumor immune response. It is crucial to comprehend the molecular events occurring during the activation and subsequent regulation of these cell populations. The interaction between antigenic peptides presented on HLA-I molecules and the T-cell receptor (TCR) constitutes the initial signal required for T cell activation. Once activated, in physiologic circumstances, immune checkpoint expression by T cells suppress T cell effector functions when the antigen is removed, to ensures the maintenance of self-tolerance, immune homeostasis, and prevention of autoimmunity. However, in cancer, the overexpression of these molecules represents a common method through which tumor cells evade immune surveillance. Numerous therapeutic antibodies have been developed to inhibit immune checkpoints, demonstrating antitumor activity with fewer side effects compared to traditional chemotherapy. Nevertheless, it's worth noting that many immune checkpoint expressions occur after T cell activation and consequently, altered HLA expression on tumor cells could diminish the clinical efficacy of these antibodies. This review provides an in-depth exploration of immune checkpoint molecules, their corresponding blocking antibodies, and their clinical applications.
Collapse
Affiliation(s)
- Lidy Vannessa Mejía-Guarnizo
- Cancer Biology Research Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Sciences Faculty, Master in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
2
|
Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, Mintoff D, Padjen I, Shumnalieva R, Vural S, Kötter I, van de Sande MG, Boyvat A, de Boer JH, Bertsias G, de Vries N, Krieckaert CL, Leal I, Vidovič Valentinčič N, Tugal-Tutkun I, El Khaldi Ahanach H, Costantino F, Glatigny S, Mrazovac Zimak D, Lötscher F, Kerstens FG, Bakula M, Viera Sousa E, Böhm P, Bosman K, Kenna TJ, Powis SJ, Breban M, Gul A, Bowes J, Lories RJ, Nowatzky J, Wolbink GJ, McGonagle DG, Turkstra F. EULAR study group on ‘MHC-I-opathy’: identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis 2023:ard-2022-222852. [PMID: 36987655 DOI: 10.1136/ard-2022-222852] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
The ‘MHC-I (major histocompatibility complex class I)-opathy’ concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet’s disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.
Collapse
Affiliation(s)
- Jonas Jw Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jörg C Prinz
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Institute of Immunology and Experimental Therapy Ludwik Hirszfeld Polish Academy of Sciences, Wroclaw, Poland
| | - Akiko Arakawa
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | | | - Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
- Department of Pathology, University of Malta Faculty of Medicine and Surgery, Msida, Malta
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Russka Shumnalieva
- Clinic of Rheumatology, Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Seçil Vural
- School of Medicine, Department of Dermatology, Koç University, Istanbul, Turkey
| | - Ina Kötter
- Clinic for Rheumatology and Immunology, Bad Bramdsted Hospital, Bad Bramstedt, Germany
- Division of Rheumatology and Systemic Inflammatory Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marleen G van de Sande
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ayşe Boyvat
- Department of Dermatology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Joke H de Boer
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Niek de Vries
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Lm Krieckaert
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Inês Leal
- Department of Ophthalmology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal
- Centro de Estudeos das Ciencias da Visão, Universidade de Lisboa Faculdade de Medicina, Lisboa, Portugal
| | - Nataša Vidovič Valentinčič
- University Eye Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Hanane El Khaldi Ahanach
- Departement of Ophthalmology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Félicie Costantino
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France
- Laboratoire d'Excellence Inflamex, Paris, France
| | | | - Fabian Lötscher
- Department of Rheumatology and Immunology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Floor G Kerstens
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Marija Bakula
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
| | - Elsa Viera Sousa
- Rheumatology Research Unit Molecular João Lobo Antunes, University of Lisbon Medical Faculty, Lisboa, Portugal
- Rheumatology DepartmentSanta Maria Centro Hospital, Academic Medical Centre of Lisbon, Lisboa, Portugal
| | - Peter Böhm
- Patientpartner, German League against Rheumatism, Bonn, Germany
| | - Kees Bosman
- Patientpartner, Nationale Vereniging ReumaZorg, Nijmegen, The Netherlands
| | - Tony J Kenna
- Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon J Powis
- School of Medicine, University of St Andrews School of Medicine, St Andrews, UK
| | - Maxime Breban
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Ahmet Gul
- Division of Rheumatology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, The University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rik Ju Lories
- Department of Rheumatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York University, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gerrit Jan Wolbink
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Franktien Turkstra
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Fatica M, D'Antonio A, Novelli L, Triggianese P, Conigliaro P, Greco E, Bergamini A, Perricone C, Chimenti MS. How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management. Curr Rheumatol Rep 2023; 25:12-33. [PMID: 36308677 PMCID: PMC9825525 DOI: 10.1007/s11926-022-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE This review aims at investigating pathophysiological mechanisms in spondyloarthritis (SpA). Analysis of genetic factors, immunological pathways, and abnormalities of bone metabolism lay the foundations for a better understanding of development of the axial clinical manifestations in patients, allowing physician to choose the most appropriate therapeutic strategy in a more targeted manner. RECENT FINDINGS In addition to the contribution of MHC system, findings emerged about the role of non-HLA genes (as ERAP1 and 2, whose inhibition could represent a new therapeutic approach) and of epigenetic mechanisms that regulate the expression of genes involved in SpA pathogenesis. Increasing evidence of bone metabolism abnormalities secondary to the activation of immunological pathways suggests the development of various bone anomalies that are present in axSpA patients. SpA are a group of inflammatory diseases with a multifactorial origin, whose pathogenesis is linked to the genetic predisposition, the action of environmental risk factors, and the activation of immune response. It is now well known how bone metabolism leads to long-term structural damage via increased bone turnover, bone loss and osteoporosis, osteitis, erosions, osteosclerosis, and osteoproliferation. These effects can exist in the same patient over time or even simultaneously. Evidence suggests a cross relationship among innate immunity, autoimmunity, and bone remodeling in SpA, making treatment approach a challenge for rheumatologists. Specifically, treatment targets are consistently increasing as new drugs are upcoming. Both biological and targeted synthetic drugs are promising in terms of their efficacy and safety profile in patients affected by SpA.
Collapse
Affiliation(s)
- Mauro Fatica
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lucia Novelli
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Greco
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alberto Bergamini
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Mahmoudi M, Aslani S, Meguro A, Akhtari M, Fatahi Y, Mizuki N, Shahram F. A comprehensive overview on the genetics of Behçet's disease. Int Rev Immunol 2020; 41:84-106. [PMID: 33258398 DOI: 10.1080/08830185.2020.1851372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Behçet's disease (BD) is a systemic and inflammatory disease, characterized mainly by recurrent oral and genital ulcers, eye involvement, and skin lesions. Although the exact etiopathogenesis of BD remains unrevealed, a bulk of studies have implicated the genetic contributing factors as critical players in disease predisposition. In countries along the Silk Road, human leukocyte antigen (HLA)-B51 has been reported as the strongest genetically associated factor for BD. Genome-wide association studies, local genetic polymorphism studies, and meta-analysis of combined data from Turkish, Iranian, and Japanese populations have also identified new genetic associations with BD. Among these, other HLA alleles such as HLA-B*15, HLA-B*27, HLA-B*57, and HLA-A*26 have been found as independent risk factors for BD, whereas HLA-B*49 and HLA-A*03 are independent protective alleles for BD. Moreover, other genes have also reached the genome-wide significance level of association with BD susceptibility, including IL10, IL23R-IL12RB2, IL12A, CCR1-CCR3, STAT4, TNFAIP3, ERAP1, KLRC4, and FUT2. Also, several rare nonsynonymous variants in TLR4, IL23R, NOD2, and MEFV genes have been reported to be involved in BD pathogenesis. According to genetic determinants in the loci outside the MHC region that are contributed to the host defense, immunity, and inflammation pathways, it is suggested that immune responses to the pathogen as an important environmental factor and mucosal immunity contribute to BD susceptibility.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Maryam Akhtari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Farhad Shahram
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Macías-Barragán J, Montoya-Buelna M, Enciso-Vargas M, Alvarado-Ruíz L, Oceguera-Contreras E, Guerra-Renteria AS, Graciano-Machuca O. Assessment of the Relationship between Clinical Variants of Psoriasis and Killer Immunoglobulin-like Receptor ( KIR) Genes: A Systematic Review with Meta-analysis. Immunol Invest 2020; 51:480-495. [PMID: 33115277 DOI: 10.1080/08820139.2020.1840582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Psoriasis (Ps) is an autoimmune dermatosis. Previous studies have shown an association between KIR genes and susceptibility to some clinical variants of Ps. Therefore, we conducted an exhaustive systematic review with meta-analysis to evaluate the relationship between KIR genes and susceptibility to clinical variants of Ps in the overall population and according to ethnicity. METHODS According to PRISMA guidelines, we performed a systematic review through PubMed and Web of Science to identify relevant available scientific publications about KIR genes and Ps. The quality of the studies was evaluated using the Newcastle-Ottawa scale. Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using random and fixed effect models for the analyzed genes. Heterogeneity was tested using Cochran's Q-Statistic and I2, and the risk of bias was tested using the Begg test and Egger linear regression. RESULTS A total of 10 case-control studies were included, comprising a variable number of KIR typified genes and psoriasis vulgaris (PsV) as the main clinical variant studied. In the total pooled results, the KIR2DS1 gene (OR = 1.518, p = .010, 95%CI: 1.105 to 2.086) was related to higher susceptibility to PsV, while the KIR2DS4 (OR = 0.563, p = .005, 95%CI: 0.376 to 0.842) and KIR3DL1 (OR = 0.602, p = .040, 95%CI: 0.370 to 0.977) genes were related to protection against PsV. CONCLUSION This meta-analysis demonstrates that subjects that carry the KIR2DS1 gene could have a potential risk factor for the development of PsV. Conversely, KIR2DS4 and 3DL1 genes appear to confer protection against PsV.
Collapse
Affiliation(s)
- José Macías-Barragán
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México
| | - Margarita Montoya-Buelna
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, UDG, Guadalajara, México
| | - Moisés Enciso-Vargas
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, UDG, Ocotlán, México
| | - Liliana Alvarado-Ruíz
- Escuela de Ciencias de la Salud, Campus Zapopan, Universidad del Valle de México, Zapopan, México
| | - Edén Oceguera-Contreras
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México
| | - Aracely Suggey Guerra-Renteria
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México.,Escuela de Ciencias de la Salud, Campus Zapopan, Universidad del Valle de México, Zapopan, México
| | - Omar Graciano-Machuca
- Laboratorio de Sistemas Biológicos, Departamento de Ciencias de la Salud, Centro Universitario de los Valles (Cuvalles), Universidad de Guadalajara (UDG), Ameca, México
| |
Collapse
|
6
|
The Genetics of Spondyloarthritis. J Pers Med 2020; 10:jpm10040151. [PMID: 33023259 PMCID: PMC7711559 DOI: 10.3390/jpm10040151] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The term spondyloarthritis (SpA) encompasses a group of chronic inflammatory diseases with common features in terms of clinical presentation and genetic predisposition. SpA is characterized by inflammation of the spine and peripheral joints, and is also be associated with extra-articular inflammatory manifestations such as psoriasis, uveitis, or inflammatory bowel disease (IBD). The etiology of SpA is not completely understood, but it is known to have a strong genetic component dominated by the human leukocyte antigen (HLA)-B27. In the last few years, our understanding of genetic susceptibility to SpA, particularly ankylosing spondylitis (AS), has greatly improved thanks to the findings derived from powered genome-wide association studies (GWAS) based on single nucleotide polymorphism (SNP) arrays. These studies have identified many candidate genes, therefore providing new potential directions in the exploration of disease mechanisms, especially with regard to the key role of the immune system in the pathogenesis of SpA. SpA is a complex disease where genetic variability, environmental factors, and random events interact to trigger pathological pathways. The aim of this review is to summarize current findings on the genetics of SpA, some of which might help to study new treatment approaches.
Collapse
|
7
|
Phenotypic and Functional Changes in Peripheral Blood Natural Killer Cells in Crohn Disease Patients. Mediators Inflamm 2020; 2020:6401969. [PMID: 32148442 PMCID: PMC7049869 DOI: 10.1155/2020/6401969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated activation status, cytotoxic potential, and gut homing ability of the peripheral blood Natural Killer (NK) cells in Crohn disease (CD) patients. For this purpose, we compared the expression of different activating and inhibitory receptors (KIR and non-KIR) and integrins on NK cells as well as their recent degranulation history between the patients and age-matched healthy controls. The study was conducted using freshly obtained peripheral blood samples from the study participants. Multiple color flow cytometry was used for these determinations. Our results show that NK cells from treatment-naïve CD patients expressed higher levels of activating KIR as well as other non-KIR activating receptors vis-à-vis healthy controls. They also showed increased frequencies of the cells expressing these receptors. The expression of several KIR and non-KIR inhibitory receptors tended to decrease compared with the cells from healthy donors. NK cells from the patients also expressed increased levels of different gut-homing integrin molecules and showed a history of increased recent degranulation events both constitutively and in response to their in vitro stimulation. Furthermore, treatment of the patients tended to reverse these NK cell changes. Our results demonstrate unequivocally, for the first time, that peripheral blood NK cells in treatment-naïve CD patients are more activated and are more poised to migrate to the gut compared to their counterpart cells from healthy individuals. Moreover, they show that treatment of the patients tends to normalize their NK cells. The results suggest that NK cells are very likely to play a role in the immunopathogenesis of Crohn disease.
Collapse
|
8
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Rezaei R, Mostafaei S, Aslani S, Jamshidi A, Mahmoudi M. Association study between killer immunoglobulin-like receptor polymorphisms and ankylosing spondylitis disease: An updated meta-analysis. Int J Rheum Dis 2018; 21:1746-1755. [PMID: 30398028 DOI: 10.1111/1756-185x.13408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Several genetic studies have assessed the association between polymorphisms in killer immunoglobulin-like receptors (KIR) genes and susceptibility of individuals to ankylosing spondylitis (AS), but the findings have been inconclusive and incongruous. Therefore, we conducted this meta-analysis of all case-control studies meeting the inclusion criteria for obtaining an exact conclusion of the effect of KIR polymorphisms on the risk of AS. METHODS A systematic literature search was conducted in electronic databases, including Scopus web of science, ScienceDirect, and PubMed to find all eligible studies exploring the association between KIR polymorphisms and the risk of AS, prior to June 2017. Pooled odds ratios (OR) and their corresponding 95% CIs were used to evaluate the strength of the association between KIR polymorphisms and the risk of AS. RESULTS A total of 16 case-control studies, encompassed in 12 papers, with 1770 cases and 2907 healthy subjects were included in the meta-analysis. This meta-analysis revealed three significant positive associations of 2DS1, 2DS5, and 3DS1 with susceptibility to AS, while two significant negative associations of 2DL2 and 2DS2 with susceptibility to AS were identified. In the subgroup analysis based on human leukocyte antigen (HLA)-B*27 positive patients and healthy subjects, results indicated that there were four significant positive associations between 2DL5, 2DS4, 2DS5, 3DS1 polymorphisms and susceptibility to AS in HLA-B*27-positive patients; a significant negative association of 3DL1 in HLA-B*27-positive patients was found. CONCLUSIONS While 2DS1, 2DS5, and 3DS1 polymorphisms increased AS risk, 2DL2 and 2DS2 polymorphisms were associated with reduced AS susceptibility.
Collapse
Affiliation(s)
- Ramazan Rezaei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Vanaki N, Aslani S, Jamshidi A, Mahmoudi M. Role of innate immune system in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother 2018; 105:130-143. [DOI: 10.1016/j.biopha.2018.05.097] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
|
11
|
Santos MR, Couto AR, Foroni I, Bettencourt BF, Li Z, Meneses R, Wheeler L, Pereira J, Pimentel-Santos F, Fonseca JE, Alves H, Martinho A, Lima M, Brown MA, Bruges-Armas J. Non-classical human leucocyte antigens in ankylosing spondylitis: possible association with HLA-E and HLA-F. RMD Open 2018; 4:e000677. [PMID: 30018800 PMCID: PMC6045739 DOI: 10.1136/rmdopen-2018-000677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 06/10/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is the most prevalent form of spondyloarthritis, with a known genetic association with the HLA-B27 molecule. The aim of this study was to assess the contribution of the HLA-G, HLA-E and HLA-F to AS susceptibility/protection in Portuguese patients with HLA-B27 AS and HLA-B27 unaffected controls. METHODS High-resolution typing of HLA-G, HLA-E and HLA-F was performed in 228 patients with HLA-B27 AS and 244 HLA-B27 unaffected controls. Allelic, genotypic and haplotypic frequencies were compared between cohorts. To replicate the results, single nucleotide polymorphisms (SNPs) in HLA-E and HLA-F genes were typed in Australian cohorts. For further confirmation, a group of European-descent patients with AS and unaffected controls were genotyped for Major Histocompatibility Complex SNPs using the Illumina microarray. RESULTS In the Portuguese population, no significant differences were found in HLA-G. For HLA-E, a significant difference was detected for the genotype HLA-E*01:01:01/01:03:01 (p=0.009; pc=0.009; OR=0.51), with a protection effect. For HLA-F, significant differences were detected in the allele HLA-F*01:01:02 (p=0.0049; pc=0.0098; OR=0.60) and corresponding SNP rs2075682 (p=0.0004; pc=0.0008; OR=0.53), suggesting protection and in the genotype HLA-F*01:01:01/01:03:01 (p=0.011; pc=0.043; OR=2.00), suggesting a susceptibility effect. Three G-E-F haplotypes with significant differences were detected but occur in a very small number of individuals. The only significant differences detected in the replication studies were for HLA-E rs1059510 in the Australians and for HLA-F rs1736924 in the European-descent cohorts. CONCLUSION Our results reveal suggestive AS protective and susceptibility effects from both HLA-E and HLA-F loci, however with population differences. To our knowledge, this is the first study showing association of HLA-F with AS.
Collapse
Affiliation(s)
- Margarida Rodrigues Santos
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Iris Foroni
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Bruno Filipe Bettencourt
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Zhixiu Li
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Raquel Meneses
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | - Lawrie Wheeler
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Joaquim Pereira
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
| | | | | | - Helena Alves
- Centro de Histocompatibilidade do Norte, Instituto Português do Sangue e da Transplantação, Porto, Portugal
| | - António Martinho
- Centro de Sangue e Transplantação de Coimbra, Instituto Português do Sangue e da Transplantação, Coimbra, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jácome Bruges-Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular, Hospital de Santo Espirito da Ilha Terceira, EPER, Angra do Heroismo, Portugal
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
The role of killer-cell immunoglobulin-like receptor (KIR) genes in susceptibility to inflammatory bowel disease: systematic review and meta-analysis. Inflamm Res 2018; 67:727-736. [PMID: 29869094 DOI: 10.1007/s00011-018-1162-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disease, which involves the gut and comprises of Crohn's disease (CD) and ulcerative colitis (UC). Immune cells, including natural killer (NK) cells, play an important role in the pathogenesis of the disease. Killer immunoglobulin-like receptors (KIRs) are NK cell surface receptors, which ligate to the class I major histocompatibility complex (MHC) and have inhibitory or activating effects on the NK cells. The aim of this study was to perform a meta-analysis of the six studies evaluating the association in the polymorphisms of these KIR genes and the IBD risk (4 UC and 5 CD studies). METHODS A systematic search was conducted in the electronic databases to find all the studies on the KIR gene polymorphism in IBD patients prior to December 2017. The odds ratio (OR) and 95% confidence interval (CI) were used to find any association between KIR gene polymorphisms and the IBD risk. RESULTS Following extraction of the data from the studies, which were screened by inclusion and exclusion criteria, collectively 432 patients and 886 controls for UC and 1677 patients and 1308 controls for CD were included in the meta-analysis. The statistical evaluation demonstrated positive associations between 2DL5 (OR=1.31, 95% CI=1.01-1.69) and 2DS1 (OR=1.33, 95% CI=1.01-1.76) members of KIR genes and UC risk, as well a negative association between 2DS3 gene and CD risk was detected (OR=0.74, 95% CI=0.60-0.90). CONCLUSIONS There are positive associations between 2DL5 and 2DS1 members of KIR genes and UC risk and a negative association between 2DS3 and CD risk.
Collapse
|
13
|
Genotype B of Killer Cell Immunoglobulin-Like Receptor is Related with Gastric Cancer Lesions. Sci Rep 2018; 8:6104. [PMID: 29666399 PMCID: PMC5904182 DOI: 10.1038/s41598-018-24464-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
NK cells are important in innate immunity for their capacity to kill infected or cancer cells. The killer cell immunoglobulin-like receptors (KIR) are a family of polymorphic genes with inhibitory and activating functions. The main driving force for gastric cancer (GC) development is a chronic response, which causes an increase of NK cells in the gastric mucosa. The aim of this work was to study polymorphisms in KIR genes in patients with either GC or non-atrophic gastritis (NAG). We studied 242 patients (130 with NAG and 112 with GC) and contrasted with 146 asymptomatic individuals. We analyzed diversity in the content and localization of KIR genes in the different clinical groups studied. Four activating and one inhibitory genes were associated with GC: 2DS1 (OR 3.41), 2DS3 (OR 4.66), 2DS5 (OR 2.25), 3DS1 (OR 3.35) and 2DL5 (OR 3.6). The following were also found as risk factors for GC: Bx genotype (OR 4.2), Bx-Bx centromere-telomere (OR 2.55), cA01|cB03 (OR 36.39) and tB01|tB01 (OR 7.55) gene content and three B motifs (OR 10.9). Polymorphisms in KIR genes were associated with GC and suggest that mutated NK cells may contribute to GC development by increasing gastric mucosa inflammation, leading to constant tissue damage.
Collapse
|
14
|
Wang CM, Wang SH, Jan Wu YJ, Lin JC, Wu J, Chen JY. Human Leukocyte Antigen C*12:02:02 and Killer Immunoglobulin-Like Receptor 2DL5 are Distinctly Associated with Ankylosing Spondylitis in the Taiwanese. Int J Mol Sci 2017; 18:E1775. [PMID: 28812990 PMCID: PMC5578164 DOI: 10.3390/ijms18081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 11/21/2022] Open
Abstract
Human leukocyte antigen (HLA) class I ligands and Killer immunoglobulin-like receptors (KIRs) regulate the cytolytic activity of natural killer (NK) cells and certain T cells. We examined their genetic predisposition to disease susceptibility and clinical phenotypes in Taiwanese ankylosing spondylitis (AS) patients. KIR genotyping and Human Leucocyte Antigen C (HLA-C) sequencing were performed in 653 Taiwanese AS patients and 952 healthy controls. KIR genotype distributions and HLA-C allele frequencies were compared in patients and controls and among patients with and without HLA-B27 positivity, early age onset and spinal syndesmophytes. HLA-C alleles were functionally characterized using 3D structural modelling with peptide simulation. This study discovered that the HLA-C*12:02:02 allele (43.42% vs. 3.31%; p < 0.00001 odds ratio (OR), 16.88; 95% confidence intervals (CI): 11.27-25.28) confers a strong risk for Taiwanese AS development. The 3D modelling results identified four unique amino acid polymorphisms, Ala73, Trp156, Arg219 and Met304, that may affect the function of the HLA-C*12:02:02 allele. KIR2DL5 (p = 0.0047; pFDR = 0.0423) and the KIR Bx haplotype (p = 0.0000275) were protective against Taiwanese AS, while KIR 2DS4/1D (22 base pair truncated deletion; p = 0.0044; pFDR = 0.1998) appeared to be a risk factor for it. KIR2DL5 combined with the HLA-C1/C2 heterozygous genotype showed a protective effect (AS 5.97% vs. normal 11.66%; p = 0.002; pFDR = 0.0127, OR, 0.48 95% CI: 0.33-0.70); in contrast, KIR 2DS4/1D combined with the HLA-C1C1 homozygous genotype (AS 45.33% vs. normal 35.92%; p = 0.002; pFDR = 0.0127, OR, 1.48 95% CI: 1.21-1.81) represented a risk factor for AS development. Our data suggested that interactions between KIRs and their cognate HLA-C ligands may contribute to the pathogenesis of AS.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33375, Taiwan.
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 33375, Taiwan.
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kuei-Shan, Taoyuan 33375, Taiwan.
| | - Jing-Chi Lin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kuei-Shan, Taoyuan 33375, Taiwan.
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kuei-Shan, Taoyuan 33375, Taiwan.
| |
Collapse
|
15
|
Hilton HG, Parham P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 2017; 69:567-579. [PMID: 28695291 DOI: 10.1007/s00251-017-1001-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders. Evolutionary, genetic, and functional studies are consistent with the interactions between KIR and HLA-C being the dominant control mechanism of human NK cells. In addition to their recognition of the C1 and C2 epitopes, increasing evidence points to KIR having a previously unrecognized selectivity for the peptide presented by HLA-C. This selectivity appears to be a conserved feature of activating KIR and may partly explain the slow progress made in identifying their HLA class I ligands. The peptide selectivity of KIR allows NK cells to respond, not only to changes in the surface expression of HLA-C, but also to the more subtle changes in the HLA-C peptidome, such as occur during viral infection and malignant transformation. Here, we review recent advances in understanding of human-specific KIR evolution and how the inhibitory and activating HLA-C receptors allow NK cells to respond to healthy cells, diseased cells, and the semi-allogeneic cells of the fetus.
Collapse
Affiliation(s)
- Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Yu H, Liu F, Sansas B, Kang B, Preville X, Wu X, Chang J, Micol R, Wang J, Meng X. Typing of killer-cell immunoglobulin-like receptors and their cognate human leukocyte antigen class I ligands predicts survival of Chinese Han patients with metastatic non-small-cell lung cancer. Mol Clin Oncol 2016; 6:279-285. [PMID: 28357111 DOI: 10.3892/mco.2016.1106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/09/2016] [Indexed: 11/06/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) may establish an immunosuppressive tumor microenvironment that is conducive to tumor growth. Natural killer (NK) cells play a pivotal role in immunological surveillance. Activation of NK cells partially depends on the interactions between killer-cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands. We herein investigated the association of KIRs and HLA ligands with survival in metastatic NSCLC (mNSCLC) patients treated with chemotherapy in a Chinese Han population. Polymerase chain reaction with sequence-specific primers was used to type 15 KIRs at the DNA and mRNA level and 6 HLA ligands in 70 mNSCLC patients. Survival curves were estimated using the Kaplan-Meier method and compared with the log-rank test. Cox proportional hazard regression model was applied for multivariate survival analysis, with the stepwise selection, to determine independent predictors of survival. It was observed that patients with KIR2DS4del gene expression at the mRNA level or HLA-Bw4T80 exhibited poor overall survival (OS). The multivariate analysis revealed that HLA-Bw4T80 and KIR2DS4del expression were independent predictors of OS. This observation indicated that the KIR/HLA ligand is a promising predictor of survival in mNSCLC and may also provide a strategy for treatment stratification and patient management.
Collapse
Affiliation(s)
- Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fang Liu
- Fudan University Shanghai Cancer Center-Institut Mérieux Laboratory, Shanghai 200032, P.R. China; Transgene Biopharmaceutical Technology (Shanghai) Co. Ltd., Shanghai 201315, P.R. China
| | - Benoit Sansas
- Transgene S.A., 67405 Illkirch Graffenstaden, France
| | - Bin Kang
- Fudan University Shanghai Cancer Center-Institut Mérieux Laboratory, Shanghai 200032, P.R. China
| | | | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Romain Micol
- Transgene S.A., 67405 Illkirch Graffenstaden, France
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xia Meng
- Fudan University Shanghai Cancer Center-Institut Mérieux Laboratory, Shanghai 200032, P.R. China; Transgene Biopharmaceutical Technology (Shanghai) Co. Ltd., Shanghai 201315, P.R. China
| |
Collapse
|
17
|
Queiro R, Morante I, Cabezas I, Acasuso B. HLA-B27 and psoriatic disease: a modern view of an old relationship. Rheumatology (Oxford) 2015; 55:221-9. [PMID: 26289052 DOI: 10.1093/rheumatology/kev296] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 12/22/2022] Open
Abstract
Psoriasis and PsA are the main phenotypes of psoriatic disease. Both conditions are highly polygenic diseases in which stochastic and environmental factors are crucial in the pathogenic process. Although the MHC region is a highly dense genetic area, most of the genetic basis of psoriatic disease within it resides in the HLA region. For decades, HLA-C*06 has been accepted as the main descriptor of the two main phenotypes of skin psoriasis. There is now compelling evidence to suggest that HLA-C*06 is only a genetic biomarker for skin involvement and not for joint involvement in psoriatic disease. The role of HLA-B*27 in the genetic aetiology of PsA has been recognized since the 1970s. Recent population case-control studies with adequate patient groups and replication cohorts, as well as confirmation studies in family pedigrees through the use of modern molecular typing methods, have reinforced the aetiological role of this allele in PsA. These studies have offered a new vision of the role of this allele in disease expression. This review contextualizes the latest findings on the role of HLA-B27 in psoriatic disease, emphasizing those aspects of particular interest for clinical practice.
Collapse
Affiliation(s)
- Rubén Queiro
- Rheumatology Division, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isla Morante
- Rheumatology Division, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Iván Cabezas
- Rheumatology Division, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Belén Acasuso
- Rheumatology Division, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
18
|
|