1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
3
|
Conti F, Moratti M, Sabattini E, Zinzani PL. Expert insights on Hodgkin's lymphoma development in an activated PI3K delta syndrome patient undergoing leniolisib treatment. Front Immunol 2025; 15:1517543. [PMID: 39872539 PMCID: PMC11770023 DOI: 10.3389/fimmu.2024.1517543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Activated PI3K delta syndrome (APDS) is a primary immunodeficiency that is caused by mutations in the PI3K signalling pathway resulting in either gain-of-function or loss-of-function phenotypes of APDS 1 and 2. Malignancy is one of the most serious complications associated with APDS patients, with the most commonly occurring of these being lymphoma, and is the most common cause of death in APDS patients. Management of APDS is complex and variable due to the heterogeneous nature of the disease and ranges from antimicrobial and immunosuppressant agents to haematopoetic stem cell transplantation. More recently, an increasing level of interest has been shown in the use of more targeted agents such as PI3Kδ-specific inhibitors. Here, we provide expert perspective on the suspected causality of a case of lymphoma observed in a 20-year-old female patient who was included in a clinical trial of leniolisib, a PI3K inhibitor.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Mattia Moratti
- Specialty School of Paediatrics-Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
4
|
Barzaghi F, Moratti M, Panza G, Rivalta B, Giardino G, De Rosa A, Baselli LA, Chinello M, Marzollo A, Montin D, Marinoni M, Costagliola G, Ricci S, Lodi L, Martire B, Milito C, Trizzino A, Tommasini A, Zecca M, Badolato R, Cancrini C, Lougaris V, Pignata C, Conti F. Report of the Italian Cohort with Activated Phosphoinositide 3-Kinase δ Syndrome in the Target Therapy Era. J Clin Immunol 2024; 45:58. [PMID: 39714594 DOI: 10.1007/s10875-024-01835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity). METHODS Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers. RESULTS Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes. The median age at diagnosis was 15.5 years, with a median follow-up of 74 months (range 6-384). The main presenting symptoms were respiratory tract infections alone (57%) or associated with lymphoproliferation (17%). Later, non-clonal lymphoproliferation was the leading clinical sign (86%), followed by respiratory infections (79%) and gastrointestinal complications (43%). Malignant lymphoproliferative disorders, all EBV-encoding RNA (EBER)-positive at the histological analysis, occurred in 14% of patients aged 17-19 years, highlighting the role of EBV in lymphomagenesis in this disorder. Diffuse large B-cell lymphoma was the most frequent. Immunological work-up revealed combined T/B cell abnormalities in most patients. Treatment strategies included immunosuppression and PI3K/Akt/mTOR inhibitor therapy. Rapamycin, employed in 36% of patients, showed efficacy in controlling lymphoproliferation, while selective PI3Kδ inhibitor leniolisib, administered in 32% of patients, was beneficial on both infections and immune dysregulation. Additionally, three patients underwent successful HSCT due to recurrent infections despite ongoing prophylaxis or lymphoproliferation poorly responsive to Rapamycin. CONCLUSIONS This study underscores the clinical heterogeneity and challenging diagnosis of APDS, highlighting the importance of multidisciplinary management tailored to individual needs and further supporting leniolisib efficacy.
Collapse
Affiliation(s)
- Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Moratti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giuseppina Panza
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Beatrice Rivalta
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Antonio De Rosa
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Augusta Baselli
- Pediatric Immunorheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Chinello
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino and Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maddalena Marinoni
- SSD Oncoematologia Pediatrica, Dipartimento materno infantile, Ospedale Filippo del Ponte, ASST Sette Laghi, Varese, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Baldassarre Martire
- Maternal and Child Department, Unit of Pediatrics and Neonatology, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, "ARNAS Civico Di Cristina Benfratelli" Hospital, Palermo, Italy
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali civili, Brescia, Italy
| | - Caterina Cancrini
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Science, Pediatric Section, Federico II University, Via S. Pansini, 5, 80131 , Naples, Italy.
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Bildik HN, Esenboga S, Halaclı SO, Karaatmaca B, Aytekin ES, Nabiyeva N, Akarsu A, Ocak M, Erman B, Tan C, Arikoglu T, Yaz I, Cicek B, Tezcan I, Cagdas D. A single center experience on PI3K/AKT/MTOR signaling defects: Towards pathogenicity assessment for four novel defects. Pediatr Allergy Immunol 2024; 35:e14245. [PMID: 39312287 DOI: 10.1111/pai.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Phosphoinositide 3 kinases (PI3K) are lipid kinases expressed in lymphocytes/myeloid cells. PI3K/AKT/mTOR signaling defects present with recurrent infections, autoimmunity, lymphoproliferation, and agammaglobulinemia. OBJECTIVE To characterize the PI3K/AKT/mTOR pathway defects and perform pathway analyses to assess novel variant pathogenicity. METHODS We included 12 patients (heterozygous PIK3CD (n = 9) and PIK3R1 (n = 1) (activated PI3K delta syndrome (APDS) with gain-of-function mutations) and homozygous PIK3R1 variant (n = 2)), performed clinical/laboratory/genetic evaluation, and flow cytometric PI3K/AKT/mTOR pathway analyses. RESULTS Median age at onset of complaints was 17.5 months (3 months to 12 years) and at diagnosis was 15.7 years (2.5-37) in APDS. Median diagnostic delay was 12.9 years (1.6-27). Recurrent respiratory tract infections (90%), lymphoproliferation (70%), autoimmune/inflammatory findings (60%), and allergy (40%) were common in APDS. Recurrent viral infections were present in 4/10 and malignancy (non-Hodgkin lymphoma and testicular yolk sac tumor) was present in 2/10 in APDS. Low CD4+ T cells(5/8) with increased CD4+ effector memory (8/8) and CD4+ TEMRA cells (6/8) were present in the given number of APDS patients. We diagnosed tubulointerstitial nephritis, Langerhans cell histiocytosis, and late-onset congenital adrenal hyperplasia in APDS. Allergic findings, lymphoproliferation/malignancy, and high IgM were present in the APDS but not in PIK3R1 deficiency. Low IgM/IgG/CD19+ B cell counts were characteristic in patients with PIK3R1 homozygous loss-of function mutations. CONCLUSION Differential diagnosis with combined immunodeficiency and diseases of immune dysregulation make molecular genetic analysis crucial for diagnosing mTOR pathway defects. It is easy to differentiate APDS and homozygous PIK3R1 defects with specific laboratory features. Additionally, mTOR pathway functional analysis is a definitive diagnostic and pathogenicity assessment tool for novel APDS mutations.
Collapse
Affiliation(s)
- Hacer Neslihan Bildik
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevil Oskay Halaclı
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Betül Karaatmaca
- Pediatric Allergy and Immunology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Elif Soyak Aytekin
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nadira Nabiyeva
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşegul Akarsu
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melike Ocak
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baran Erman
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tugba Arikoglu
- Department of Pediatrics, Division of Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ismail Yaz
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Begum Cicek
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
7
|
Hanson J, Bonnen PE. Systematic review of mortality and survival rates for APDS. Clin Exp Med 2024; 24:17. [PMID: 38280023 PMCID: PMC10821986 DOI: 10.1007/s10238-023-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.
Collapse
Affiliation(s)
- Jennifer Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Sood AK, Francis O, Schworer SA, Johnson SM, Smith BD, Googe PB, Wu EY. ANCA vasculitis expands the spectrum of autoimmune manifestations of activated PI3 kinase δ syndrome. Front Pediatr 2023; 11:1179788. [PMID: 37274825 PMCID: PMC10235767 DOI: 10.3389/fped.2023.1179788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is a combined immunodeficiency with a broad clinical phenotype, including not only an increased propensity for sinopulmonary and herpesviruses infections but also immune dysregulation, such as benign lymphoproliferation, autoimmunity, and malignancy. Autoimmune complications are increasingly recognized as initial presenting features of immune dysregulation in inborn errors of immunity (IEIs), including APDS, so awareness of the spectrum of autoimmune features inherit within these disorders is critical. We present here a patient vignette to highlight cutaneous antineutrophil cytoplasmic antibody (ANCA) vasculitis as an underrecognized autoimmune manifestation of APDS. The genetic defects underlying APDS result in increased PI3Kδ signaling with aberrant downstream signaling pathways and loss of B- and/or T-cell immunologic tolerance mechanisms, which promote the development of autoimmunity. An understanding of the molecular pathways and mechanisms that lead to immune dysregulation in APDS has allowed for significant advancements in the development of precision-medicine therapeutics, such as leniolisib, to reduce the morbidity and mortality for these patients. Overall, this case and review highlight the need to maintain a high index of suspicion for IEIs, such as APDS, in those presenting with autoimmunity in combination with a dysregulated immune phenotype for prompt diagnosis and targeted intervention.
Collapse
Affiliation(s)
- Amika K. Sood
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Olivia Francis
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Stephen A. Schworer
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin D. Smith
- Division of Pediatric Radiology, Department of Radiology, The University of North Carolina, Chapel Hill, NC, United States
| | - Paul B. Googe
- Dermatopathology, Department of Dermatology, The University of North Carolina, Chapel Hill, NC, United States
| | - Eveline Y. Wu
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
- Division of Rheumatology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Yang X, Xi R, Bai J, Pan Y. Successful haploidentical hematopoietic stem cell transplantation for activated phosphoinositide 3-kinase δ syndrome: Case report and literature review. Medicine (Baltimore) 2023; 102:e32816. [PMID: 36749229 PMCID: PMC9902017 DOI: 10.1097/md.0000000000032816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
RATIONALE Activated phosphoinositide 3-kinase δ syndrome (APDS), a recently described primary immunodeficiency,is caused by autosomal dominant mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta(PIK3CD) gene encoding the p110δ catalytic subunit of PI3Kδ (APDS1) or the PIK3R1 gene that encodes the p85α regulatory subunit of PI3Kδ (APDS2). Gain-of-function mutation of PIK3CD in APDS1 leads to p110δ hyperactivity, with the result of the hyperphosphorylation of downstream mediators of Akt and mammalian target of rapamycin that cause a series of clinical symptoms. Few cases with APDS were reported in Asia. PATIENT CONCERNS We report a 6-year-old patient with a recurrent respiratory infection, cryptosporidium enteritis, lymphoproliferation, high serum immunoglobulin-M level, anemia, and inverted CD4+/CD8+ ratio. The whole exome sequencing confirmed a heterozygous missense mutation c.3061G>A(p.E1021K)in patient and her mother. Her mutant gene is inherited from her mother, but her mother has not any clinical symptoms. DIAGNOSES Activated phosphoinositide 3-kinase δ syndrome. INTERVENTIONS The patient was received immunoglobulin (Ig) replacement therapy, antibiotics, and rapamycin treatment. Through effectively controlling infection and optimal timing of transplantation by adjusting the conditioning regimen, haploidentical Hematopoietic Stem Cell Transplantation(haplo-HSCT) from her brother was successfully performed. OUTCOMES The patient is in good condiion with a good quality of life after 20 months of follow-up. LESSONS We reported a rare APDS1 case with PIK3CD E1021K gene mutation, Successfully treated with haplo-HSCT. This case provided a reference for treating APDS with haplo-HSCT.
Collapse
Affiliation(s)
- Xiaolan Yang
- Department of Hematology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Rui Xi
- Department of Hematology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Jiaofeng Bai
- Department of Hematology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Yaozhu Pan
- Department of Hematology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| |
Collapse
|
10
|
Yazdanpanah N, Rezaei N. Autoimmune disorders associated with common variable immunodeficiency: prediction, diagnosis, and treatment. Expert Rev Clin Immunol 2022; 18:1265-1283. [PMID: 36197300 DOI: 10.1080/1744666x.2022.2132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency. Due to the wide spectrum of the CVID manifestations, the differential diagnosis becomes complicated, ends in a diagnostic delay and increased morbidity and mortality rates. Autoimmunity is one of the important complications associated with CVID. While immunoglobulin replacement therapy has considerably decreased the mortality rate in CVID patients, mainly infection-related mortality, other complications such as autoimmunity appeared prevalent and, in some cases, life threatening. AREAS COVERED In this article, genetics, responsible immune defects, autoimmune manifestations in different organs, and the diagnosis and treatment processes in CVID patients are reviewed, after searching the literature about these topics. EXPERT OPINION Considering the many phenotypes of CVID and the fact that it remained undiagnosed until older ages, it is important to include various manifestations of CVID in the differential diagnosis. Due to the different manifestations of CVID, including autoimmune diseases, interdisciplinary collaboration of physicians from different fields is highly recommended, as discussed in the manuscript. Meanwhile, it is important to determine which patients could benefit from genetic diagnostic studies since such studies are not necessary for establishing the diagnosis of CVID.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Guevara-Hoyer K, Fuentes-Antrás J, de la Fuente-Muñoz E, Fernández-Arquero M, Solano F, Pérez-Segura P, Neves E, Ocaña A, Pérez de Diego R, Sánchez-Ramón S. Genomic crossroads between non-Hodgkin's lymphoma and common variable immunodeficiency. Front Immunol 2022; 13:937872. [PMID: 35990641 PMCID: PMC9390007 DOI: 10.3389/fimmu.2022.937872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency (CVID) represents the largest group of primary immunodeficiencies that may manifest with infections, inflammation, autoimmunity, and cancer, mainly B-cell non-Hodgkin's lymphoma (NHL). Indeed, NHL may result from chronic or recurrent infections and has, therefore, been recognized as a clinical phenotype of CVID, although rare. The more one delves into the mechanisms involved in CVID and cancer, the stronger the idea that both pathologies can be a reflection of the same primer events observed from different angles. The potential effects of germline variants on specific somatic modifications in malignancies suggest that it might be possible to anticipate critical events during tumor development. In the same way, a somatic alteration in NHL could be conditioning a similar response at the transcriptional level in the shared signaling pathways with genetic germline alterations in CVID. We aimed to explore the genomic substrate shared between these entities to better characterize the CVID phenotype immunodeficiency in NHL. By means of an in-silico approach, we interrogated the large, publicly available datasets contained in cBioPortal for the presence of genes associated with genetic pathogenic variants in a panel of 50 genes recurrently altered in CVID and previously described as causative or disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available for analysis harbored variants of the CVID spectrum, with the most recurrent alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway analysis of common gene alterations showed enrichment in inflammatory, immune surveillance, and defective DNA repair mechanisms similar to those affected in CVID, with PIK3R1 appearing as a central node in the protein interaction network. The co-occurrence of gene alterations was a frequent phenomenon. This study represents an attempt to identify common genomic grounds between CVID and NHL. Further prospective studies are required to better know the role of genetic variants associated with CVID and their reflection on the somatic pathogenic variants responsible for cancer, as well as to characterize the CVID-like phenotype in NHL, with the potential to influence early CVID detection and therapeutic management.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Fernando Solano
- Department of Hematology, General University Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Hospital and University Center of Porto, Porto, Portugal
| | - Alberto Ocaña
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
12
|
Tofighi Zavareh F, Mirshafiey A, Yazdani R, Keshtkar AA, Abolhassani H, Mahdaviani SA, Habibi S, Sohani M, Rezaei N, Aghamohammadi A. Immunophenotypic and functional analysis of lymphocyte subsets in common variable immunodeficiency patients without monogenic defects. Scand J Immunol 2022; 96:e13164. [PMID: 35305035 DOI: 10.1111/sji.13164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Common variable immunodeficiency (CVID) is accompanied by various lymphocyte abnormalities believed to be mostly responsible for disease features in patients with no diagnosed monogenic defects. Here, we evaluated the association of B and T lymphocyte abnormalities with the incidence of CVID. Twenty-six genetically unsolved CVID patients were examined for B and T lymphocyte subsets by flow cytometry and CD4+ T cell proliferation by Carboxyfluorescein succinimidyl ester (CFSE) test. We detected a reduction in total, naive, memory B cells and plasmablasts, and also total, naive, central memory and regulatory CD4+ T cells, besides naive CD8+ T cells. There were an increase in CD21low and transitional B cells, effector memory (EM) and terminally differentiated effector memory (TEMRA ) CD4+ T cell subsets as well as total, EM, TEMRA , activated and cytotoxic CD8+ T cells among non-monogenic CVID patients. CD4+ T cells proliferation response was reduced regarding both division index and percent divided. In conclusion, regarding the similarity of lymphocyte abnormalities between patients without genetic defects and those with monogenic defects, genetic mutations are not responsible for these specific lymphocyte changes. However, the novel correlations observed between lymphocyte alterations among genetically unsolved CVID patients may serve as a guide to predict the potential of future CVID development for hypogammaglobulinemia children.
Collapse
Affiliation(s)
- Farzaneh Tofighi Zavareh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abbas Mirshafiey
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Abbas Ali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Qiu L, Wang Y, Tang W, Yang Q, Zeng T, Chen J, Chen X, Zhang L, Zhou L, Zhang Z, An Y, Tang X, Zhao X. Activated Phosphoinositide 3-Kinase δ Syndrome: a Large Pediatric Cohort from a Single Center in China. J Clin Immunol 2022; 42:837-850. [PMID: 35296988 DOI: 10.1007/s10875-022-01218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Activated phosphoinositide 3-kinase δ syndrome (APDS) is a primary immunodeficiency first described in 2013, which is caused by gain-of-function mutations in PIK3CD or PIK3R1, and characterized by recurrent respiratory tract infections, lymphoproliferation, herpesvirus infection, autoimmunity, and enteropathy. We sought to review the clinical phenotypes, immunological characteristics, treatment, and prognosis of APDS in a large genetically defined Chinese pediatric cohort. METHODS Clinical records, radiology examinations, and laboratory investigations of 40 APDS patients were reviewed. Patients were contacted via phone call to follow up their current situation. RESULTS Sinopulmonary infections and lymphoproliferation were the most common complications in this cohort. Three (10.3%) and five (12.5%) patients suffered localized BCG-induced granulomatous inflammation and tuberculosis infection, respectively. Twenty-seven patients (67.5%) were affected by autoimmunity, while malignancy (7.5%) was relatively rare to be seen. Most patients in our cohort took a combined treatment of anti-infection prophylaxis, immunoglobulin replacement, and immunosuppressive therapy such as glucocorticoid or rapamycin administration. Twelve patients underwent hematopoietic stem cell transplantation (HSCT) and had a satisfying prognosis. CONCLUSION Clinical spectrum of APDS is heterogeneous. This cohort's high incidence of localized BCG-induced granulomatous inflammation and tuberculosis indicates Mycobacterial susceptibility in APDS patients. Rapamycin is effective in improving lymphoproliferation and cytopenia. HSCT is an option for those who have severe complications and poor response to other treatments.
Collapse
Affiliation(s)
- Luyao Qiu
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanping Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wenjing Tang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qiuyun Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ting Zeng
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junjie Chen
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Liang Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lina Zhou
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhiyong Zhang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yunfei An
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xuemei Tang
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaodong Zhao
- Department of Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
14
|
Craig M, Geng B, Wigby K, Phillips SA, Bakhoum C, Naheedy J, Cernelc-Kohan M. Activated phosphoinositide 3-kinase δ syndrome associated with nephromegaly, growth hormone deficiency, bronchiectasis: a case report. Allergy Asthma Clin Immunol 2022; 18:15. [PMID: 35189965 PMCID: PMC8862239 DOI: 10.1186/s13223-022-00655-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background Activated phosphoinositide 3-kinase (PI3K) δ syndrome (APDS) is a rare form of primary immunodeficiency with 243 known cases reported in the literature. Known findings associated with the condition include recurrent sinusitis and bronchitis, bronchiectasis, immune cytopenias, mild developmental delay, splenomegaly, and lymphadenopathy. We report the case of a child with APDS accompanied by unique clinical features: nephromegaly and growth hormone deficiency with associated pituitary anatomic abnormality. Case presentation The patient is a nine-year-old boy with a heterozygous de novo variant in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit δ (p.E1021K), previously reported in association with APDS. Our patient, who had no family history of immunodeficiency, exhibits classic findings of this syndrome but also has unique features that extend the phenotypic spectrum of this disorder. At 5 years of age, the patient showed marked growth deceleration and was demonstrated to have growth hormone (GH) deficiency with associated pituitary anatomic abnormality. He started GH therapy with an excellent response. He additionally has bilateral nephromegaly of unclear etiology, microscopic hematuria and proteinuria, asthma, and has developed left hip pain with arthrocentesis consistent with oligoarticular juvenile idiopathic arthritis. At age nine, the patient was referred to genetics and whole exome sequencing revealed APDS. Though there was initial concern that GH may increase risk for malignancy as GH signals through the PI3K pathway, he was allowed to continue treatment as the PI3K pathway was considered constitutively active at baseline. Conclusions Our patient’s unique presentation adds to the clinical information regarding APDS, demonstrates the utility of genetic testing and illustrates the importance of a multidisciplinary collaborative approach in managing this complex syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00655-5.
Collapse
|
15
|
Yin Z, Tian X, Zou R, He X, Chen K, Zhu C. Case Report: First Occurrence of Plasmablastic Lymphoma in Activated Phosphoinositide 3-Kinase δ Syndrome. Front Immunol 2021; 12:813261. [PMID: 34992612 PMCID: PMC8724197 DOI: 10.3389/fimmu.2021.813261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal dominant primary immunodeficiency caused by acquired gene function mutation (GOF). APDS has a variety of clinical phenotypes, particularly recurrent respiratory infections and lymphoproliferation. Here we report a pediatric patient with APDS who presented with recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, bronchoscopy suggesting numerous nodular protrusions in the airways and a decrease in both T and B lymphocytes, and progression to plasmablastic lymphoma (PBL) after 1 year. Whole exome sequencing revealed a heterozygous mutation in the PIK3CD gene (c.3061 G>A p.E1021K). This is the first reported case of APDS combined with PBL and pediatricians should follow up patients with APDS regularly to be alert for secondary tumours.
Collapse
|
16
|
Amirifar P, Yazdani R, Azizi G, Ranjouri MR, Durandy A, Plebani A, Lougaris V, Hammarstrom L, Aghamohammadi A, Abolhassani H. Known and potential molecules associated with altered B cell development leading to predominantly antibody deficiencies. Pediatr Allergy Immunol 2021; 32:1601-1615. [PMID: 34181780 DOI: 10.1111/pai.13589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Predominantly antibody deficiencies (PADs) encompass a heterogeneous group of disorders characterized by low immunoglobulin serum levels in the presence or absence of peripheral B cells. Clinical presentation of affected patients may include recurrent respiratory and gastrointestinal infections, invasive infections, autoimmune manifestations, allergic reactions, lymphoproliferation, and increased susceptibility to malignant transformation. In the last decades, several genetic alterations affecting B-cell development/maturation have been identified as causative of several forms of PADs, adding important information on the genetic background of PADs, which in turn should lead to a better understanding of these disorders and precise clinical management of affected patients. This review aimed to present a comprehensive overview of the known and potentially involved molecules in the etiology of PADs to elucidate the pathogenesis of these disorders and eventually offer a better prognosis for affected patients.
Collapse
Affiliation(s)
- Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Alessandro Plebani
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
17
|
Schworer SA, Francis O, Johnson SM, Smith BD, Gold SH, Smitherman AB, Wu EY. Autoimmune Cytopenia as an Early and Initial Presenting Manifestation in Activated PI3 Kinase Delta Syndrome: Case Report and Review. J Pediatr Hematol Oncol 2021; 43:281-287. [PMID: 34054047 PMCID: PMC8542580 DOI: 10.1097/mph.0000000000002214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
Activated PI3 kinase delta syndrome (APDS) is a combined immunodeficiency characterized by recurrent sinopulmonary infections, increased risk of herpesvirus infections, lymphoproliferation, autoimmunity, and increased risk of lymphoid malignancies. Gain-of-function mutations in PIK3CD and PIK3R1 result in increased phosphoinositide-3-kinase-delta activity which causes hyperactivation of lymphocytes and abnormal development and activation of T and B cells. Cytopenias are the most common autoimmune process occurring in patients with APDS and typically occur as a later manifestation of the disease. Here we present a female patient with an early autoimmune hemolytic anemia, hepatosplenomegaly, and frequent infections presenting in infancy, followed by development of significant lymphadenopathy before her diagnosis with APDS type 1. She had significant improvement in her infectious history with immunoglobulin replacement, and control of autoimmune hemolytic anemia with initiation of sirolimus after her diagnosis with APDS type 1. We utilize this case to review the literature on APDS and present the novel finding of early-onset autoimmune disease in the setting of APDS. Autoimmune cytopenias are seen in many primary immunodeficiencies, and workup of autoimmune cytopenias in young patients should include evaluation for underlying immune disorder.
Collapse
Affiliation(s)
- Stephen A. Schworer
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
| | - Olivia Francis
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC
| | - Benjamin D. Smith
- Division of Pediatric Radiology, Department of Radiology, The University of North Carolina, Chapel Hill, NC
| | - Stuart H. Gold
- Division of Hematology/Oncology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Andrew B. Smitherman
- Division of Hematology/Oncology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC
| | - Eveline Y. Wu
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
- Division of Rheumatology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
18
|
Clinical, Immunological, and Genetic Features in Patients with Activated PI3Kδ Syndrome (APDS): a Systematic Review. Clin Rev Allergy Immunol 2021; 59:323-333. [PMID: 31111319 DOI: 10.1007/s12016-019-08738-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a novel primary immunodeficiency (PID) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD) or regulatory p85α (PIK3R1) subunits leading to APDS1 and APDS2, respectively. Patients with APDS present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation. We searched PubMed, Web of Science, and Scopus databases for APDS patients and screened for eligibility criteria. A total of 243 APDS patients were identified from 55 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Overall, 179 APDS1 and 64 APDS2 patients were identified. The most common clinical manifestations were respiratory tract infections (pneumonia (43.6%), otitis media (28.8%), and sinusitis (25.9%)), lymphoproliferation (70.4%), autoimmunity (28%), enteropathy (26.7%), failure to thrive (20.6%), and malignancy (12.8%). The predominant immunologic phenotype was hyper-IgM syndrome (48.1%). Immunologic profiling showed decreased B cells in 74.8% and CD4+ T cells in 64.8% of APDS patients. The c.3061 G>A (p. E1021K) mutation in APDS1 with 85% frequency and c.1425+1 G> (A, C, T) (p.434-475del) mutation in APDS2 with 79% frequency were hotspot mutations. The majority of APDS patients were placed on long-term immunoglobulin replacement therapy. Immunosuppressive agents such as rituximab, tacrolimus, rapamycin, and leniolisib were also administered for autoimmunity and inflammatory complications. In addition, hematopoietic stem cell transplantation (HSCT) was used in 12.8% of patients. APDS has heterogynous clinical manifestations. It should be suspected in patients with history of recurrent respiratory infections, lymphoproliferation, and raised IgM levels. Moreover, HSCT should be considered in patients with severe and complicated clinical manifestations with no or insufficient response to the conventional therapies.
Collapse
|
19
|
Więsik-Szewczyk E, Rutkowska E, Kwiecień I, Korzeniowska M, Sołdacki D, Jahnz-Różyk K. Patients with Common Variable Immunodeficiency Complicated by Autoimmune Phenomena Have Lymphopenia and Reduced Treg, Th17, and NK Cells. J Clin Med 2021; 10:3356. [PMID: 34362140 PMCID: PMC8348468 DOI: 10.3390/jcm10153356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Most patients with primary immune deficiency suffer from recurrent infections; however, paradoxical autoimmune phenomena can also manifest. The aim of this study was to identify immunological markers of autoimmune phenomena associated with common variable immunodeficiency (CVID). The study included 33 adults with CVID divided into two groups: (1) those with noninfectious autoimmune complications (CVID-C (n = 24)) and (2) those with only infectious symptoms (CVID-OI (n = 9)). Flow cytometry of peripheral blood was performed and compared with systemic lupus erythematosus (SLE) patients (n = 17) and healthy controls (n = 20). We found that all lymphocytes were lower in CVID-C and SLE. NK cells were lowest in CVID-C. Th17 cells were significantly reduced in CVID-C and SLE. Tregs were significantly lower in CVID-C and SLE. Bregs did not significantly differ between any groups. Class-switched memory B cells were significantly lower in CVID-C and CVID-OI. Lastly, plasmablasts were significantly higher in SLE. Among the T cell subsets, CVID-C patients had lower naive and recent thymic emigrant CD4+ T cells. In conclusion, reduced Treg, Th17, and NK cells are features of CVID with autoimmune complications, and class-switched memory B cells can help distinguish patients with different causes of autoimmunity. Future studies are needed to confirm whether reductions of Treg, Th17, and NK cells might be a biomarker of more complicated CVID cases.
Collapse
Affiliation(s)
- Ewa Więsik-Szewczyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
| | - Elżbieta Rutkowska
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (I.K.)
| | - Iwona Kwiecień
- Laboratory of Hematology and Flow Cytometry, Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (E.R.); (I.K.)
| | - Marcelina Korzeniowska
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
| | - Dariusz Sołdacki
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-691 Warsaw, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergy and Clinical Immunology, Military Institute of Medicine, Szaserów 128, 04-141 Warsaw, Poland; (M.K.); (D.S.); (K.J.-R.)
| |
Collapse
|
20
|
Nguyen T, Deenick EK, Tangye SG. Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Rev Clin Immunol 2021; 17:905-914. [PMID: 34157234 DOI: 10.1080/1744666x.2021.1945443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that plays a fundamental role in cell survival, metabolism, proliferation and differentiation. Thus, balanced PI3K signalling is critical for multiple aspects of human health. The discovery that germline variants in genes in the PI3K pathway caused inborn errors of immunity highlighted the non-redundant role of these signalling proteins in the human immune system. The subsequent identification and characterisation of >300 individuals with a novel immune dysregulatory disorder, termed activated PI3K-delta syndrome (APDS), has reinforced the status of PI3K as a key pathway regulating immune function. Studies of APDS have demonstrated that dysregulated PI3K function is disruptive for immune cell development, activation, differentiation, effector function and self-tolerance, which are all important in supporting effective, long-term immune responses. AREAS COVERED In this review, we recount recent findings regarding humans with germline variants in PI3K genes and discuss the underlying cellular and molecular pathologies, with a focus on implications for therapy in APDS patients. EXPERT OPINION Modulating PI3K immune cell signalling by offers opportunities for therapeutic interventions in settings of immunodeficiency, autoimmunity and malignancy, but also highlights potential adverse events that may result from overt pharmacological or intrinsic inhibition of PI3K function.
Collapse
Affiliation(s)
- Tina Nguyen
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Elissa K Deenick
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Stuart G Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
21
|
Brodsky NN, Lucas CL. Infections in activated PI3K delta syndrome (APDS). Curr Opin Immunol 2021; 72:146-157. [PMID: 34052541 DOI: 10.1016/j.coi.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
Activated PI3K-delta Syndrome (APDS), also called PI3K-delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI), is an autosomal dominant disorder caused by inherited or de novo gain-of-function mutations in one of two genes encoding subunits of the phosphoinositide-3-kinase delta (PI3Kδ) complex. This largely leukocyte-restricted protein complex regulates cell growth, activation, proliferation, and survival. Patients who harbor these mutations have early onset immunodeficiency with recurrent infections, lymphadenopathy, and autoimmunity. The most common infection susceptibilities are sinopulmonary (encapsulated bacteria) and herpesviruses. Multiple defects in both innate and adaptive immune function are responsible for this phenotype. Apart from anti-microbial prophylaxis and immunoglobulin replacement, patients are treated with a variety of immunomodulatory agents and some have needed hematopoietic stem cell transplants. Here, we highlight the spectrum of infections, immune defects, and therapy options in this inborn error of immunity.
Collapse
Affiliation(s)
- Nina N Brodsky
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208064, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA.
| |
Collapse
|
22
|
Dimitrova D, Nademi Z, Maccari ME, Ehl S, Uzel G, Tomoda T, Okano T, Imai K, Carpenter B, Ip W, Rao K, Worth AJJ, Laberko A, Mukhina A, Néven B, Moshous D, Speckmann C, Warnatz K, Wehr C, Abolhassani H, Aghamohammadi A, Bleesing JJ, Dara J, Dvorak CC, Ghosh S, Kang HJ, Markelj G, Modi A, Bayer DK, Notarangelo LD, Schulz A, Garcia-Prat M, Soler-Palacín P, Karakükcü M, Yilmaz E, Gambineri E, Menconi M, Masmas TN, Holm M, Bonfim C, Prando C, Hughes S, Jolles S, Morris EC, Kapoor N, Koltan S, Paneesha S, Steward C, Wynn R, Duffner U, Gennery AR, Lankester AC, Slatter M, Kanakry JA. International retrospective study of allogeneic hematopoietic cell transplantation for activated PI3K-delta syndrome. J Allergy Clin Immunol 2021; 149:410-421.e7. [PMID: 34033842 PMCID: PMC8611111 DOI: 10.1016/j.jaci.2021.04.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 12/01/2022]
Abstract
Background: Activated phosphoinositide 3-kinase delta syndrome (APDS) is a combined immunodeficiency with a heterogeneous phenotype considered reversible by allogeneic hematopoietic cell transplantation (HCT). Objectives: This study sought to characterize HCT outcomes in APDS. Methods: Retrospective data were collected on 57 patients with APDS1/2 (median age, 13 years; range, 2–66 years) who underwent HCT. Results: Pre-HCT comorbidities such as lung, gastrointestinal, and liver pathology were common, with hematologic malignancy in 26%. With median follow-up of 2.3 years, 2-year overall and graft failure–free survival probabilities were 86% and 68%, respectively, and did not differ significantly by APDS1 versus APDS2, donor type, or conditioning intensity. The 2-year cumulative incidence of graft failure following first HCT was 17% overall but 42% if mammalian target of rapamycin inhibitor(s) (mTORi) were used in the first year post-HCT, compared with 9% without mTORi. Similarly, 2-year cumulative incidence of unplanned donor cell infusion was overall 28%, but 65% in the context of mTORi receipt and 23% without. Phenotype reversal occurred in 96% of evaluable patients, of whom 17% had mixed chimerism. Vulnerability to renal complications continued post-HCT, adding new insights into potential nonimmunologic roles of phosphoinositide 3-kinase not correctable through HCT. Conclusions: Graft failure, graft instability, and poor graft function requiring unplanned donor cell infusion were major barriers to successful HCT. Post-HCT mTORi use may confer an advantage to residual host cells, promoting graft instability. Longer-term post-HCT follow-up of more patients is needed to elucidate the kinetics of immune reconstitution and donor chimerism, establish approaches that reduce graft instability, and assess the completeness of phenotype reversal over time.
Collapse
Affiliation(s)
- Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Zohreh Nademi
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; The Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Elena Maccari
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal, and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Benjamin Carpenter
- Department of Haematology, University College Hospital National Health Service Trust, London, United Kingdom
| | - Winnie Ip
- Department of Immunology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Kanchan Rao
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom
| | - Austen J J Worth
- Department of Immunology, Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alexandra Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Bénédicte Néven
- Unité d'Immuno-hématologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France; Institut Imagine, Paris, France
| | - Despina Moshous
- Unité d'Immuno-hématologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France; Université de Paris, Paris, France; Institut Imagine, Paris, France
| | - Carsten Speckmann
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jacob J Bleesing
- Division of Bone Marrow Transplantation and Immunodeficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jasmeen Dara
- Department of Pediatrics, Division of Allergy, Immunology, Blood and Marrow Transplantation, Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, Blood and Marrow Transplantation, Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Wide River Institute of Immunology, Seoul, Korea
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center, Ljubljana, Slovenia
| | - Arunkumar Modi
- University of Arkansas for Medical Sciences Department of Pediatrics, Little Rock, Ark
| | - Diana K Bayer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Musa Karakükcü
- Department of Pediatric Hematology and Oncology, Erciyes University, Kayseri, Turkey
| | - Ebru Yilmaz
- Department of Pediatric Hematology and Oncology, Erciyes University, Kayseri, Turkey
| | - Eleonora Gambineri
- Department of "NEUROFARBA": Section of Child's Health, University of Florence, Florence, Italy; Department of Haematology-Oncology: BMT Unit, "Anna Meyer" Children's Hospital, Florence, Italy
| | - Mariacristina Menconi
- Unità Operativa Oncoematologia Pediatrica, Azienda Ospedaliero Universitaria Pisana Santa Chiara, Pisa, Italy
| | - Tania N Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Holm
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Carmem Bonfim
- Department of Immunology, Hospital Pequeno Principe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Stephen Hughes
- Department of Paediatric Immunology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Emma C Morris
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Neena Kapoor
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sylwia Koltan
- Department of Pediatric Hematology and Oncology, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Shankara Paneesha
- Department of Haematology and Stem Cell Transplantation, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Colin Steward
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert Wynn
- Department of Paediatric Immunology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Ulrich Duffner
- Blood and Bone Marrow Transplantation, Helen DeVos Children's Hospital, Grand Rapids, Mich; Department of Pediatrics and Human Development, Spectrum Health and Michigan State University, Grand Rapids, Mich
| | - Andrew R Gennery
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; The Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arjan C Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Mary Slatter
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; The Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer A Kanakry
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
23
|
Abstract
Primary immune regulatory disorders (PIRDs) are a group of diseases belonging to inborn errors of immunity. They usually exhibit lymphoproliferation, autoimmunities, and malignancies, with less susceptibility to recurrent infections. Unlike classical primary immune deficiencies, in autoimmune manifestations, such as cytopenias, enteropathy can be the first symptom of diseases, and they are typically resistant to treatment. Increasing awareness of PIRDs among specialists and a multidisciplinary team approach would provide early diagnosis and treatment that could prevent end-organ damage related to the diseases. In recent years, many PIRDs have been described, and understanding the immunological pathways linked to these disorders provides us an opportunity to use directed therapies for specific molecules, which usually offer better disease control than known classical immunosuppressants. In this review, in light of the most recent literature, we will discuss the common PIRDs and explain their clinical symptoms and recent treatment modalities.
Collapse
Affiliation(s)
- Burcu Kolukısa
- Marmara University Faculty of Medicine, Division of Pediatric Allergy and Immunology, İstanbul, Turkey,İstanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, İstanbul, Turkey,The Işıl Berat Barlan Center for Translational Medicine, İstanbul, Turkey
| | - Safa Barış
- Marmara University Faculty of Medicine, Division of Pediatric Allergy and Immunology, İstanbul, Turkey,İstanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, İstanbul, Turkey,The Işıl Berat Barlan Center for Translational Medicine, İstanbul, Turkey
| |
Collapse
|
24
|
Fekrvand S, Delavari S, Chavoshzadeh Z, Sherkat R, Mahdaviani SA, Sadeghi Shabestari M, Azizi G, Arzanian MT, Shahin Shamsian B, Eskandarzadeh S, Eslami N, Rae W, Condino-Neto A, Mohammadi J, Abolhassani H, Yazdani R, Aghamohammadi A. The First Iranian Cohort of Pediatric Patients with Activated Phosphoinositide 3-Kinase-δ (PI3Kδ) Syndrome (APDS). Immunol Invest 2021; 51:644-659. [PMID: 33401995 DOI: 10.1080/08820139.2020.1863982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently defined combined primary immunodeficiency disease (PID) characterized by recurrent respiratory tract infections, lymphoproliferation, autoimmunity and lymphoma. Gain-of-function mutations in PIK3CD and loss-of-function of PIK3R1 genes lead to APDS1 and APDS2, respectively.Methods: Demographic, clinical, immunological and genetic data were collected from medical records of 15 pediatric patients, who were genetically identified using the whole-exome sequencing method.Results: Fifteen patients (6 APDS1 and 9 APDS2) were enrolled in this study. Recurrent respiratory tract infections followed by lymphoproliferation and autoimmunity were the most common manifestations (86.7%, 53.3% and 26.7%, respectively). Five patients (33.3%) had a Hyper-IgM-syndrome-like immunoglobulin profile. In the APDS1 group, splice site and missense mutations were found in half of the patients and the C-lobe domain of PIK3CD was the most affected region (50%). In the APDS2 group, splice site mutation was the most frequent mutation (77.8%) and the inter-SH2 domain was the most affected region of PIK3R1 (66.7%). Mortality rate was significantly higher in APDS2 group (P = .02) mainly due to chronic lung infections.Conclusion: Respiratory tract infections and humoral immunodeficiency are commonly the most important complication in pediatric APDS patients, and they can be fatal by ultimately causing catastrophic damage to the structure of lungs. Hence, physicians should be aware of its significance and further work-up of patients with recurrent respiratory tract infections especially in patients with lymphoproliferation. Moreover, delineation of genotype-phenotype associations with disease severity could be helpful in the timely application of appropriate management and patients' survival.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi Shabestari
- Children Hospital of Tabriz, Immunology Research Center of Tabriz, TB and Lung Research Center of Tabriz, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taghi Arzanian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
25
|
Ahmed AA, El Shahaway AA, Hussien SA. Activated PI3K-delta syndrome in an Egyptian pediatric cohort with primary immune deficiency. Allergol Immunopathol (Madr) 2020; 48:686-693. [PMID: 32349894 DOI: 10.1016/j.aller.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Activated Phospho-Inositide 3 (PI3) Kinases Delta syndrome (APDS) can underlie primary immune deficiency. The prevalence and phenotypic characterization of these patients are not well described in Egypt. OBJECTIVES To describe patients with APDS in hospitalized children with recurrent respiratory tract infections with suspected primary immune deficiency. METHODS 79 patients were included in the study. E1021K and E525K mutations of PI3K δ chain gene were screened by Sanger sequencing technique. RESULTS one patient was heterozygous to E1021K mutation; a female child was diagnosed clinically as Combined Immune Deficiency with CD4 and B lymphopenia and markedly deficient IgG and increased IgM. The E525K mutation was not detected in our cohort. CONCLUSIONS Screening for APDS in patients with recurrent respiratory tract infections with undefined antibody deficiency or combined immune deficiency with or without bronchiectasis is required. These patients need great attention to benefit from the available treatment. Further studies on the Egyptian population are recommended to increase the knowledge about the prevalence and phenotypic characterization of this disease in Egypt.
Collapse
Affiliation(s)
- Alshymaa A Ahmed
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig City, Al Sharqia Governorate, Egypt.
| | - Alia A El Shahaway
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Zagazig University, Zagazig City, Al Sharqia Governorate, Egypt.
| | - Sameh A Hussien
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig City, Al Sharqia Governorate, Egypt.
| |
Collapse
|
26
|
Diaz N, Juarez M, Cancrini C, Heeg M, Soler-Palacín P, Payne A, Johnston GI, Helmer E, Cain D, Mann J, Yuill D, Conti F, Di Cesare S, Ehl S, Garcia-Prat M, Maccari ME, Martín-Nalda A, Martínez-Gallo M, Moshous D, Santilli V, Semeraro M, Simonetti A, Suarez F, Cavazzana M, Kracker S. Seletalisib for Activated PI3Kδ Syndromes: Open-Label Phase 1b and Extension Studies. THE JOURNAL OF IMMUNOLOGY 2020; 205:2979-2987. [PMID: 33115853 DOI: 10.4049/jimmunol.2000326] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Mutations in two genes can result in activated PI3Kδ syndrome (APDS), a rare immunodeficiency disease with limited therapeutic options. Seletalisib, a potent, selective PI3Kδ inhibitor, was evaluated in patients with APDS1 and APDS2. In the phase 1b study (European Clinical Trials Database 2015-002900-10) patients with genetic and clinical confirmation of APDS1 or APDS2 received 15-25 mg/d seletalisib for 12 wk. Patients could enter an extension study (European Clinical Trials Database 2015-005541). Primary endpoints were safety and tolerability, with exploratory efficacy and immunology endpoints. Seven patients (median age 15 years; APDS1 n = 3; APDS2 n = 4) received seletalisib; five completed the phase 1b study. For the extension study, four patients entered, one withdrew consent (week 24), three completed ≥84 wk of treatment. In the phase 1b study, patients had improved peripheral lymphadenopathy (n = 2), lung function (n = 1), thrombocyte counts (n = 1), and chronic enteropathy (n = 1). Overall, effects were maintained in the extension. In the phase 1b study, percentages of transitional B cells decreased, naive B cells increased, and senescent CD8 T cells decreased (human cells); effects were generally maintained in the extension. Seletalisib-related adverse events occurred in four of seven patients (phase 1b study: hepatic enzyme increased, dizziness, aphthous ulcer, arthralgia, arthritis, increased appetite, increased weight, restlessness, tendon disorder, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (aphthous ulcer). Serious adverse events occurred in three of seven patients (phase 1b study: hospitalization, colitis, and potential drug-induced liver injury) and one of four patients had adverse events in the extension (stomatitis). Patients with APDS receiving seletalisib had improvements in variable clinical and immunological features, and a favorable risk-benefit profile was maintained for ≤96 wk.
Collapse
Affiliation(s)
| | | | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, 08035 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | - Francesca Conti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, 08035 Barcelona, Catalonia, Spain
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, 08035 Barcelona, Catalonia, Spain
| | - Mónica Martínez-Gallo
- Immunology Division and Diagnostic Immunology Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, 08035 Barcelona, Catalonia, Spain
| | - Despina Moshous
- Pediatric Immunology, Haematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Center - University of Paris, 75743 Paris, France.,Imagine Institute, INSERM UMR 1163, University of Paris, 75015 Paris, France
| | - Veronica Santilli
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Michaela Semeraro
- Imagine Institute, INSERM UMR 1163 et CNRS ERL 8254, University of Paris, 75015 Paris, France.,Academic Department of Pediatrics, Clinical Trial Unit, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Alessandra Simonetti
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.,Academic Department of Pediatrics, Clinical Trial Unit, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Felipe Suarez
- Imagine Institute, INSERM UMR 1163 et CNRS ERL 8254, University of Paris, 75015 Paris, France.,Adult Haematology Department, Haematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Center - University of Paris, 75743 Paris, France
| | - Marina Cavazzana
- Biotherapy Clinical Investigation Center, University Hospitals Paris West, Assistance Publique-Hôpitaux de Paris, INSERM, 75004 Paris, France.,Imagine Institute, University of Paris, 75015 Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015 Paris, France; and.,Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Center - University of Paris, 75015 Paris, France
| | - Sven Kracker
- Imagine Institute, University of Paris, 75015 Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, 75015 Paris, France; and
| |
Collapse
|
27
|
Activated Phosphoinositide 3-Kinase Delta Syndrome 1: Clinical and Immunological Data from an Italian Cohort of Patients. J Clin Med 2020; 9:jcm9103335. [PMID: 33080915 PMCID: PMC7603210 DOI: 10.3390/jcm9103335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome 1 (APDS-1) is a recently described inborn error of immunity caused by monoallelic gain-of-function mutations in the PIK3CD gene. We reviewed for the first time medical records and laboratory data of eight Italian APDS-1 patients. Recurrent sinopulmonary infections were the most common clinical feature at onset of disease. Seven patients presented lymphoproliferative disease, at onset or during follow-up, one of which resembled hemophagocytic lymphohistiocytosis (HLH). Genetic analysis of the PIK3CD gene revealed three novel mutations: functional testing confirmed their activating nature. In the remaining patients, the previously reported variants p.E1021K (n = 4) and p.E525A (n = 1) were identified. Six patients were started on immunoglobulin replacement treatment (IgRT). One patient successfully underwent hematopoietic stem cell transplantation (HSCT), with good chimerism and no GVHD at 21 months post-HSCT. APDS-1 is a combined immune deficiency with a wide variety of clinical manifestations and a complex immunological presentation. Besides IgRT, specific therapies targeting the PI3Kδ pathway will most likely become a valid aid for the amelioration of patients’ clinical management and their quality of life.
Collapse
|
28
|
Del Pino Molina L, Torres Canizales JM, Pernía O, Rodríguez Pena R, Ibanez de Caceres I, López Granados E. Defective Bcl-2 expression in memory B cells from common variable immunodeficiency patients. Clin Exp Immunol 2020; 203:341-350. [PMID: 32961586 DOI: 10.1111/cei.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinemia and different degrees of B cell compartment alteration. Memory B cell differentiation requires the orchestrated activation of several intracellular signaling pathways that lead to the activation of a number of factors, such as nuclear factor kappa B (NF-κB) which, in turn, promote transcriptional programs required for long-term survival. The aim of this study was to determine if disrupted B cell differentiation, survival and activation in B cells in CVID patients could be related to defects in intracellular signaling pathways. For this purpose, we selected intracellular readouts that reflected the strength of homeostatic signaling pathways in resting cells, as the protein expression levels of the Bcl-2 family which transcription is promoted by NF-κB. We found reduced Bcl-2 protein levels in memory B cells from CVID patients. We further explored the possible alteration of this crucial prosurvival signaling pathway in CVID patients by analysing the expression levels of mRNAs from anti-apoptotic proteins in naive B cells, mimicking T cell-dependent activation in vitro with CD40L and interleukin (IL)-21. BCL-XL mRNA levels were decreased, together with reduced levels of AICDA, after naive B-cell activation in CVID patients. The data suggested a molecular mechanism for this tendency towards apoptosis in B cells from CVID patients. Lower Bcl-2 protein levels in memory B cells could compromise their long-term survival, and a possible less activity of NF-κB in naive B cells, may condition an inabilityto increase BCL-XL mRNA levels, thus not promoting survival in the germinal centers.
Collapse
Affiliation(s)
- L Del Pino Molina
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - J M Torres Canizales
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - O Pernía
- Cancer Epigenetics Laboratory, INGEMM, Biomarkers and Experimental Therapeutics in Cancer Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - R Rodríguez Pena
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - I Ibanez de Caceres
- Cancer Epigenetics Laboratory, INGEMM, Biomarkers and Experimental Therapeutics in Cancer Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - E López Granados
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| |
Collapse
|
29
|
del Pino‐Molina L, Torres Canizales JM, Rodríguez‐Pena R, López‐Granados E. Evaluation of B‐cell intracellular signaling by monitoring the
PI3K‐Akt
axis in patients with common variable immunodeficiency and activated phosphoinositide 3‐kinase delta syndrome. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:460-466. [DOI: 10.1002/cyto.b.21956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/13/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Lucía del Pino‐Molina
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| | - Juan M. Torres Canizales
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| | - Rebeca Rodríguez‐Pena
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| | - Eduardo López‐Granados
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| |
Collapse
|
30
|
APDS2 and SHORT Syndrome in a Teenager with PIK3R1 Pathogenic Variant. J Clin Immunol 2020; 40:1020-1025. [DOI: 10.1007/s10875-020-00843-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
31
|
Orf K, Abbas A, Abdel-Aziz K, Burns SO. Transverse myelitis in a patient with activated phosphoinositide 3-kinase δ syndrome type 1. Clin Immunol 2020; 219:108552. [PMID: 32758532 DOI: 10.1016/j.clim.2020.108552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Kate Orf
- Department of Haematology, University College London Hospital, UK.
| | - Ahmed Abbas
- Department of Neurology, St George's Hospital, UK
| | - Khaled Abdel-Aziz
- Department of Neurology, St George's Hospital, UK; Department of Neurology, St Peter's Hospital, UK
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, UK; Department of Immunology, Royal Free London NHS Foundation Trust, UK
| |
Collapse
|
32
|
Rheumatologic and autoimmune manifestations in primary immune deficiency. Curr Opin Allergy Clin Immunol 2020; 19:545-552. [PMID: 31425194 DOI: 10.1097/aci.0000000000000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Here we review the rheumatologic and autoimmune features of primary immune deficiencies with a focus on recently recognized genetic diseases, the spectrum of autoimmunity in PID, and targeted therapies. RECENT FINDINGS Primary immune deficiencies (PIDs) were initially described as genetic diseases of the immune system leading to susceptibility to infection. It is now well recognized that immune dysfunction and dysregulation also cause noninfectious complications including autoimmunity. The increased application of molecular testing for PID has revealed the diversity of clinical disease. Recent discoveries of diseases with prominent autoimmunity include activated phosphoinositide 3-kinase δ syndrome and PIDs caused by gain-of-function in STAT1 and STAT3. Similarly, identification of larger cohorts of patients with molecular diagnoses in more common PIDs, such as common variable immune deficiency (CVID), has led to increased understanding of the range of autoimmunity in PIDs. Understanding the molecular basis of these PIDs has the potential to lead to targeted therapy to treat associated autoimmunity. SUMMARY Autoimmunity and rheumatologic disease can be presenting symptoms and/or complicating features of primary immunodeficiencies. Evaluation for PIDs in patients who have early-onset, multiple, and/or atypical autoimmunity can enhance diagnosis and therapeutic options.
Collapse
|
33
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
34
|
Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 2020; 143:1676-1687. [PMID: 31060715 DOI: 10.1016/j.jaci.2019.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md; Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md.
| |
Collapse
|
35
|
Novel heterozygous PIK3CD mutation presenting with only laboratory markers of combined immunodeficiency. LYMPHOSIGN JOURNAL 2020. [DOI: 10.14785/lymphosign-2020-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta (PIK3CD) is one part of a heterodimer forming the enzyme phosphoinositide 3-kinase (PI3K), found primarily in leukocytes. PIK3CD generates phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and is involved in cell growth, survival, proliferation, motility, and morphology. An increasing number of patients have been described with heterozygous PIK3CD gain-of-function (GOF) mutations, leading to combined immunodeficiency with both B- and T-cell dysfunction. Patients suffer recurrent respiratory infections, often associated with bronchiectasis and ear and sinus damage, as well as severe recurrent or persistent infections by herpesviruses, including EBV-induced lymphoproliferation. Aim: To present the clinical phenotypic variability of a novel PI3KCD mutation within a family. Methods: Patient information was collected prospectively and retrospectively from medical records. Comprehensive immune work up, genetic, and signaling evaluation was performed. Results: We describe here 2 patients, daughter and mother, with heterozygous PIK3CD mutation identified by whole exome sequencing and Sanger confirmation. The child was screen-positive by newborn screening for severe combined immunodeficiency (SCID). Cellular assays revealed an increase in the baseline phosphorylation of T cells in the patient. Furthermore, both patients had hyper-activation of the catalytic domain, resulting in increased phosphorylation of AKT upon activation. Discussion: GOF mutations affecting the PIK3CD gene are associated with an increased risk for lymphoproliferation leading to Activated PIK3-delta syndrome (APDS). The clinical course of APDS is highly variable, ranging from combined immunodeficiency with recurrent infections, autoimmune complications, and requiring stem cell transplantation, through isolated antibody deficiency, to asymptomatic adults. Our patient is the first to be identified by newborn screening for SCID. Surprisingly, the clinical course has so far been unremarkable, as well, the mother appears to be completely asymptomatic. Nevertheless, the persistent lymphopenia indicates PIK3CD dysfunction. Because of the wide gap between laboratory findings and clinical manifestations, this kindred poses both a diagnostic as well treatment challenge. Statement of novelty: We report here a novel PIK3CD mutation diagnosed due to abnormal newborn screen for SCID.
Collapse
|
36
|
Ewertowska M, Grześk E, Urbańczyk A, Dąbrowska A, Bąbol-Pokora K, Łęcka M, Kołtan S. Activated phosphoinositide 3-kinase delta syndrome 1 and 2 (APDS 1 and APDS 2): similarities and differences based on clinical presentation in two boys. Allergy Asthma Clin Immunol 2020; 16:22. [PMID: 32265996 PMCID: PMC7115069 DOI: 10.1186/s13223-020-00420-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Activated PI3K delta syndrome (APDS) belongs to the heterogeneous group of primary immunodeficiency disorders (PIDs). Progress in next-generation sequencing (NGS) enabled identification of gain-of-function mutations in phosphoinositide 3-kinase (PI3K) genes. Depending on the type of causative mutation, APDS is classified into two types: APDS 1 and APDS 2. To date, less than 100 cases of APDS have been reported. Clinical symptoms of APDS result from impaired immune regulation and are clinically manifested by recurrent infections, allergies, lymphoproliferation and autoimmunity. They show similarity to other PIDs. Therefore, many patients were diagnosed incorrectly. The availability of genetic testing has allowed establishing the correct diagnosis in increasing number of patients suffering from APDS. Case presentations The first male patient presented in infancy with recurrent infections. Subsequently he was found to suffer from hepatosplenomegaly, early portal hypertension, massive lymphoproliferation and hypogammaglobulinemia. The common E1021K mutation in the PI3KCD gene was identified. The patient underwent successful hematopoietic stem cell transplantation with resolution of most symptoms. The second patient suffered from persistent growth retardation since early life, facial dysmorphism and recurrent respiratory infections from early childhood. He was found to have systemic lympho-proliferation, panhypoglobulinemia and impaired antibody responses to vaccines. The introduction of NGS in Poland enabled rapid identification of a mutation in the PI3KR1 gene. Growth hormone administration seemed to have worsened the lymphoproliferation. Conclusions Patients with suspected common variable immunodeficiency (CVID) and additional symptoms, such as allergy, facial dysmorphia, short stature, enhanced lymphoproliferation and lack of adequate response to human immunoglobulin replacement therapy, should be considered for NGS-based genetic testing. It may substantially shorten the time needed to establish the correct diagnosis, direct appropriate treatment and avoid potentially harmful therapies. To date, few cases of APDS have been described. It is important to report each of them to establish clinical indices and laboratory biomarkers of APDS 1 and APDS 2, to develop the standards of care in these conditions.
Collapse
Affiliation(s)
- Marlena Ewertowska
- 1Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagiellońska 13, 85-067 Bydgoszcz, Poland.,2Department of Paediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Skłodowskiej 9, 85-092 Bydgoszcz, Poland
| | - Elżbieta Grześk
- 2Department of Paediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Skłodowskiej 9, 85-092 Bydgoszcz, Poland
| | - Anna Urbańczyk
- 1Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagiellońska 13, 85-067 Bydgoszcz, Poland.,2Department of Paediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Skłodowskiej 9, 85-092 Bydgoszcz, Poland
| | - Anna Dąbrowska
- 2Department of Paediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Skłodowskiej 9, 85-092 Bydgoszcz, Poland
| | - Katarzyna Bąbol-Pokora
- 3Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Al. Kościuszki 4, 90-419 Łódź, Poland
| | - Monika Łęcka
- 2Department of Paediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Skłodowskiej 9, 85-092 Bydgoszcz, Poland
| | - Sylwia Kołtan
- 2Department of Paediatrics, Hematology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Skłodowskiej 9, 85-092 Bydgoszcz, Poland
| |
Collapse
|
37
|
Jia Y, Yang Q, Wang Y, Li W, Chen X, Xu T, Tian Z, Feng M, Zhang L, Tang W, Tian N, Zhou L, Song W, Zhao X. Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs. Cell Mol Immunol 2020; 18:1783-1797. [PMID: 32099075 DOI: 10.1038/s41423-020-0379-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal-dominant combined immunodeficiency disorder resulting from pathogenic gain-of-function (GOF) mutations in the PIK3CD gene. Patients with APDS display abnormal T cell homeostasis. However, the mechanisms by which PIK3CD GOF contributes to this feature remain unknown. Here, with a cohort of children with PIK3CD GOF mutations from multiple regions of China and a corresponding CRISPR/Cas9 gene-edited mouse model, we reported that hyperactive PI3Kδ disrupted TNaive cell homeostasis in the periphery by intrinsically promoting the growth, proliferation, and activation of TNaive cells. Our results showed that PIK3CD GOF resulted in loss of the quiescence-associated gene expression profile in naive T cells and promoted naive T cells to overgrow, hyperproliferate and acquire an activated functional status. Naive PIK3CD GOF T cells exhibited an enhanced glycolytic capacity and reduced mitochondrial respiration in the resting or activated state. Blocking glycolysis abrogated the abnormal splenic T cell pool and reversed the overactivated phenotype induced by PIK3CD GOF in vivo and in vitro. These results suggest that enhanced aerobic glycolysis is required for PIK3CD GOF-induced overactivation of naive T cells and provide a potential therapeutic approach for targeting glycolysis to treat patients with APDS as well as other immune disorders.
Collapse
Affiliation(s)
- Yanjun Jia
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Yang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xu
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Minxuan Feng
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaodong Zhao
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2019; 7:26-37. [PMID: 32181273 PMCID: PMC7063417 DOI: 10.1016/j.gendis.2019.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID), a heterogeneous group of inborn errors of immunity, is the most common symptomatic primary immunodeficiency disorder. Patients with CVID have highly variable clinical presentation. With the advent of whole genome sequencing and genome wide association studies (GWAS), there has been a remarkable improvement in understanding the genetics of CVID. This has also helped in understanding the pathogenesis of CVID and has drastically improved the management of these patients. A multi-omics approach integrating the DNA sequencing along with RNA sequencing, proteomics, epigenetic and metabolomics profile is the need of the hour to unravel specific CVID associated disease pathways and novel therapeutic targets. In this review, we elaborate various techniques that have helped in understanding the genetics of CVID.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
39
|
Singh A, Joshi V, Jindal AK, Mathew B, Rawat A. An updated review on activated PI3 kinase delta syndrome (APDS). Genes Dis 2019; 7:67-74. [PMID: 32181277 PMCID: PMC7063426 DOI: 10.1016/j.gendis.2019.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Activated Phosphoinositide 3-kinase δ syndrome (APDS) is a newly recognised primary immunodeficiency disease. It has currently been a hot topic of clinical research and new data are emerging regarding its pathogenesis, clinical manifestations and treatment. Patients with APDS syndrome have significant autoimmune manifestations and lymphoproliferation. It is important to differentiate APDS from the usual polygenic CVID in view of the availability of targeted therapy like mTOR inhibitors such as Rapamycin and selective PI3Kδ inhibitors. We provide a comprehensive review on this interesting disorder focusing light on its etiology, genetic research and emerging therapy.
Collapse
Affiliation(s)
| | | | | | | | - Amit Rawat
- Corresponding author. Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India.
| |
Collapse
|
40
|
CRISPR/Cas9 applications in gene therapy for primary immunodeficiency diseases. Emerg Top Life Sci 2019; 3:277-287. [PMID: 33523134 DOI: 10.1042/etls20180157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Primary immunodeficiency diseases (PIDs) encompass a range of diseases due to mutations in genes that are critical for immunity. Haploinsufficiency and gain-of-function mutations are more complex than simple loss-of-function mutations; in addition to increased susceptibility to infections, immune dysregulations like autoimmunity and hyperinflammation are common presentations. Hematopoietic stem cell (HSC) gene therapy, using integrating vectors, provides potential cure of disease, but genome-wide transgene insertions and the lack of physiological endogenous gene regulation may yet present problems, and not applicable in PIDs where immune regulation is paramount. Targeted genome editing addresses these concerns; we discuss some approaches of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas system applicable for gene therapy in PIDs. Preclinical repair of gene mutations and insertion of complementary DNA restore endogenous gene regulation and they have shown very promising data for clinical application. However, ongoing studies to characterize off-target genotoxicity, careful donor designs to ensure physiological expression, and maneuvers to optimize engraftment potential are critical to ensure successful application of this next-gen targeted HSC gene therapy.
Collapse
|
41
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
42
|
Li GM, Liu HM, Guan WZ, Xu H, Wu BB, Feng JY, Sun L. A mutation in PIK3CD gene causing pediatric systemic lupus erythematosus: A case report. Medicine (Baltimore) 2019; 98:e15329. [PMID: 31045771 PMCID: PMC6504300 DOI: 10.1097/md.0000000000015329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Gain of function (GOF) mutations in PIK3CD gene encoding PI3K p110δ were recently associated with a novel combined immune deficiency characterized by recurrent sinopulmonary infections, CD4 lymphopenia, reduced class-switched memory B cells, lymphadenopathy, cytomegalovirus and/or epstein-Barr virus (EBV) viremia, and EBV-related lymphoma. A subset of affected patients also had elevated serum IgM. PATIENT CONCERNS We report a patient who was diagnosed with systemic lupus erythematosus (SLE) at a young age and was recently found to carry heterozygous mutations in PIK3CD. The patient not only presented with recurrent sinopulmonary infections, CD4 lymphopenia, lymphadenopathy, EBV viremia, and elevated serum IgM, but also met classification criteria of SLE based on persistent proteinuria and hematuria, leukopenia and anemia, low level of serum complement, and positive autoantibody for antinuclear antibodies. DIAGNOSES Activated PI3Kδ syndrome. INTERVENTIONS Oral prednisolone and hydroxychloroquine combined with mycophenolate mofetil was given to the patient. He was currently receiving intravenous immunoglobulin per month in association with hydroxychloroquine, low-dose prednisolone, and mycophenolate mofetil. OUTCOMES At present, the level of complement restored to normal, hematuria and proteinuria disappeared, and liver function returned to normal. LESSONS SLE may be a novel phenotype of GOF mutation in PI3CKD gene (GOF PIK3CD).
Collapse
Affiliation(s)
| | | | | | | | | | - Jia-Yan Feng
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Sun
- Department of Rheumatology
| |
Collapse
|
43
|
Tangye SG, Bier J, Lau A, Nguyen T, Uzel G, Deenick EK. Immune Dysregulation and Disease Pathogenesis due to Activating Mutations in PIK3CD-the Goldilocks' Effect. J Clin Immunol 2019; 39:148-158. [PMID: 30911953 DOI: 10.1007/s10875-019-00612-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
"This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold," she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up. While this describes the adventures of Goldilocks in the classic fairytale "The Story of Goldilocks and the Three Bears," it is an ideal analogy for the need for balanced signaling mediated by phosphatidylinositol-3-kinase (PI3K), a key signaling hub in immune cells. Either too little or too much PI3K activity is deleterious, even pathogenic-it needs to be "just right"! This has been elegantly demonstrated by the identification of inborn errors of immunity in key components of the PI3K pathway, and the impact of these mutations on immune regulation. Detailed analyses of patients with germline activating mutations in PIK3CD, as well as the parallel generation of novel murine models of this disease, have shed substantial light on the role of PI3K in lymphocyte development and differentiation, and mechanisms of disease pathogenesis resulting not only from PIK3CD mutations but genetic lesions in other components of the PI3K pathway. Furthermore, by being able to pharmacologically target PI3K, these monogenic conditions have provided opportunities for the implementation of precision medicine as a therapy, as well as to gain further insight into the consequences of modulating the PI3K pathway in clinical settings.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.
| | - Julia Bier
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Anthony Lau
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Tina Nguyen
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa K Deenick
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| |
Collapse
|
44
|
Neurological Involvement in Childhood Evans Syndrome. J Clin Immunol 2019; 39:171-181. [PMID: 30671780 DOI: 10.1007/s10875-019-0594-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA) are associated in the definition of Evans syndrome (ES). The occurrence of neurological involvement in this population is poorly described and suggests an underlying primary immunodeficiency (PID). We aimed to describe the clinical manifestations, evolution, and PID profiles of these patients. METHODS OBS'CEREVANCE is a French, nationwide prospective cohort that includes children with chronic ITP, AIHA, and ES. Patients with a neurological involvement were described. Centralized radiological and pathological reviews and genetic analyses were performed. RESULTS On October 2016, eight patients (7/181 ES, 1/371 AIHA, and 0/615 ITP) were identified, all male, with a median age (range) at cytopenia onset of 11.5 years (1.6-15.8). Neurological symptoms appeared with a median delay of 6 years (2.5-18) after cytopenia and were polymorphic: seizures (n = 4), cranial nerve palsy (n = 2), Brown-Sequard syndrome (n = 2), intracranial pressure (n = 2), vertigo (n = 1), and/or sensory neuropathy (n = 1). Magnetic resonance imaging (MRI) showed inflammatory lesions, confirmed by pathology for five patients with macrophagic or lymphoplasmocytic infiltrates. All patients had other relevant immunopathological manifestations: pulmonary nodules (n = 6), lymphoproliferation (n = 4), abnormal immunophenotype (n = 8), and hypogammaglobulinemia (n = 7). Treatment consisted of steroids that improved symptomatology and MRI. Five patients relapsed and three had an asymptomatic radiological progression. A PID was identified in 3/8 patients: 22q11.2 microdeletion (n = 1) and CTLA deficiency (n = 2). CONCLUSION Neurological involvement is a rare and severe late event in the course of childhood ES, which can reveal an underlying PID. Imaging and pathology examination highlight a causative immune dysregulation that may guide targeted therapeutic strategies.
Collapse
|
45
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
46
|
Jørgensen SF, Fevang B, Aukrust P. Autoimmunity and Inflammation in CVID: a Possible Crosstalk between Immune Activation, Gut Microbiota, and Epigenetic Modifications. J Clin Immunol 2018; 39:30-36. [PMID: 30465180 DOI: 10.1007/s10875-018-0574-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency among adults and is characterized by a B cell dysfunction and increased risk of respiratory tract infections with encapsulated bacteria. However, a large proportion of patients also has inflammatory and autoimmune complications. It may seem like a paradox that immunodeficiency and inflammation/autoimmunity coexist within the same individuals. In this commentary, we propose that CVID immunopathogenesis involves an interplay of genes, environmental factors, and dysregulation of immune cells, where gut microbiota and gastrointestinal inflammation can both be important contributors or endpoints to the systemic immune activation seen in CVID, and where epigenetic mechanism may be the undiscovered link between these contributors. In our opinion, these pathways could represent novel targets for therapy in CVID directed against autoimmune and inflammatory manifestations that represent the most severe complications in these patients. Considering the heterogeneous nature of CVID, these mechanisms may not be present in all patients, and different complications may be triggered by different risk factors. CVID is really a variable disease and in the future there is clearly a need for a more personalized medicine based on both genotypic and phenotypic findings.
Collapse
Affiliation(s)
- Silje F Jørgensen
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Nydalen, P.O. Box 4950, 0424, Oslo, Norway. .,Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Børre Fevang
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Nydalen, P.O. Box 4950, 0424, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Nydalen, P.O. Box 4950, 0424, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
47
|
Rotz SJ, Ware RE, Kumar A. Diagnosis and management of chronic and refractory immune cytopenias in children, adolescents, and young adults. Pediatr Blood Cancer 2018; 65:e27260. [PMID: 29856527 DOI: 10.1002/pbc.27260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/26/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022]
Abstract
Children, adolescents, and young adults with chronic refractory autoimmune cytopenias represent a rare but challenging group of patients, who are managed frequently by pediatric hematologists. Novel diagnostic tests and genomic discoveries are refining historical diagnoses of Evans syndrome and common variable immunodeficiency, while also elucidating the cellular and molecular basis for these disorders. Genetic characterization of chronic and refractory autoimmune cytopenias has led to targeted therapies with improved clinical outcomes and fewer off-target toxicities. In this review, we focus on the appropriate diagnostic workup, expanded genetic testing, and novel treatment opportunities that are available for these challenging patients.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Russell E Ware
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashish Kumar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
48
|
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS), also known as PASLI disease (p110d-activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency) are combined immunodeficiencies resulting from gain-of-function mutations in the genes (PIK3CD and PIK3R1) encoding the subunits of phosphoinositide 3-kinase δ (PI3Kδ) and were first described in 2013. These mutations result in the hyperactivation of the PI3K/AKT/mTOR/S6K signally pathways. In this mini-review we have detailed the current treatment options for APDS. These treatments including conventional immunodeficiency therapies such as immunoglobulin replacement, antibiotic prophylaxis, and hematopoietic stem cell transplant. We also discuss the more targeted therapies of mTOR inhibition with sirolimus and selective PI3Kδ inhibitors.
Collapse
Affiliation(s)
- Tanya I. Coulter
- Regional Immunology Service, Belfast Health and Social Care TrustBelfast, United Kingdom
| | - Andrew J. Cant
- Department of Paediatric Immunology and Stem Cell Transplant Unit, Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon Tyne, United Kingdom
| |
Collapse
|
49
|
Ben-Yakov G, Kapuria D, Marko J, Cho MH, Pittaluga S, Kleiner DE, Koh C, Holland S, Uzel G, Heller T. Liver disturbances in activated phosphoinositide 3-kinase δ syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:1763-1765. [PMID: 29378322 PMCID: PMC8108071 DOI: 10.1016/j.jaip.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 11/20/2022]
Affiliation(s)
- Gil Ben-Yakov
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md.
| | - Devika Kapuria
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md
| | - Jamie Marko
- Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Min Ho Cho
- Medstar Washington Hospital Center, Washington, DC
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - David Erwin Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Christopher Koh
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md
| | - Steven Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
50
|
Moody S, Thompson JS, Chuang SS, Liu H, Raderer M, Vassiliou G, Wlodarska I, Wu F, Cogliatti S, Robson A, Ashton-Key M, Bi Y, Goodlad J, Du MQ. Novel GPR34 and CCR6 mutation and distinct genetic profiles in MALT lymphomas of different sites. Haematologica 2018; 103:1329-1336. [PMID: 29674500 PMCID: PMC6068028 DOI: 10.3324/haematol.2018.191601] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphoma originates from a background of diverse chronic inflammatory disorders at various anatomic sites. The genetics underlying its development, particularly in those associated with autoimmune disorders, is poorly characterized. By whole exome sequencing of 21 cases of MALT lymphomas of the salivary gland and thyroid, we have identified recurrent somatic mutations in 2 G-protein coupled receptors (GPR34 and CCR6) not previously reported in human malignancies, 3 genes (PIK3CD, TET2, TNFRSF14) not previously implicated in MALT lymphoma, and a further 2 genes (TBL1XR1, NOTCH1) recently described in MALT lymphoma. The majority of mutations in GPR34 and CCR6 were nonsense and frameshift changes clustered in the C-terminal cytoplasmic tail, and would result in truncated proteins that lack the phosphorylation motif important for β-arrestin-mediated receptor desensitization and internalization. Screening of these newly identified mutations, together with previously defined genetic changes, revealed distinct mutation profiles in MALT lymphoma of various sites, with those of salivary gland characterized by frequent TBL1XR1 and GPR34 mutations, thyroid by frequent TET2, TNFRSF14 and PIK3CD mutations, and ocular adnexa by frequent TNFAIP3 mutation. Interestingly, in MALT lymphoma of the salivary gland, there was a significant positive association between TBL1XR1 mutation and GPR34 mutation/translocation (P=0.0002). In those of ocular adnexa, TBL1XR1 mutation was mutually exclusive from TNFAIP3 mutation (P=0.049), but significantly associated with IGHV3-23 usage (P=0.03) and PIK3CD mutation (P=0.009). These findings unravel novel insights into the molecular mechanisms of MALT lymphoma and provide further evidence for potential oncogenic co-operation between receptor signaling and genetic changes.
Collapse
Affiliation(s)
- Sarah Moody
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, UK
| | - Joe Sneath Thompson
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, UK
| | | | - Hongxiang Liu
- Molecular Malignancy Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Markus Raderer
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Austria
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Fangtian Wu
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, UK
| | | | - Alistair Robson
- Department of Dermatopathology, St John's Institute of Dermatology, London, UK
| | - Margaret Ashton-Key
- Department of Cellular Pathology, Southampton University Hospitals National Health Service Trust, UK
| | - Yingwen Bi
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, PR China
| | - John Goodlad
- Department of Pathology, Western General Hospital, NHS Lothian University Hospitals Trust, Edinburgh, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, UK
- Molecular Malignancy Laboratory, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, UK
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, UK
| |
Collapse
|