1
|
Liu C, Alimu X, Zeng X, Bahabayi A, Gao Y, Hu Y, Chen Y, Zhao J, Lian X, Zheng M, Liu T, Wang P. Vanin-2 is expressed in peripheral blood T cells and upregulated in patients with systemic lupus erythematosus. J Leukoc Biol 2024; 116:1469-1478. [PMID: 38920355 DOI: 10.1093/jleuko/qiae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/05/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024] Open
Abstract
Members of the vanin gene family include VNN1, VNN2, and VNN3 in humans. Although the functions of vanins have been widely examined in myeloid cells, their expression and functions have not been clarified in T lymphocytes. This study aimed to elucidate the significance of Vanin-2 (VNN2) on human peripheral blood T lymphocytes and study its expression in systemic lupus erythematosus (SLE). The differential expression of Vanins was analyzed by bioinformatics. VNN2 expressions in peripheral blood T-cell subsets were analyzed by single-cell RNA sequencing data and flow cytometry. Changes of VNN2 expression before and after T-cell activation were further clarified by western blot. The function of VNN2+ cells was studied by granzyme B (GZMB) and perforin detection. Changes in VNN2+ proportions in T-cell subsets of patients with SLE were further analyzed. In the present study, only VNN2 among vanins showed distinguishable expression in T cells. VNN2+ percentages were higher in CD8+ T cells those in CD4+ T cells. VNN2+ T cells were with a higher memory T-cell composition. VNN2 expression was significantly increased after T-cell stimulation. VNN2+ T cells had higher levels of GZMB and perforin secretion than VNN2- T cells. Clinically, VNN2+ percentages in T cells of patients with SLE were upregulated. Together, these data suggested that VNN2 is expressed in peripheral blood T cells characterized more GZMB and perforin secretion, and increased VNN2+ T cells in patients with SLE could reflect altered T-cell functions in vivo.
Collapse
Affiliation(s)
- Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Yiming Gao
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, No. 38, Xuyuan Road, Beijing 100191, China
- Peking University Center for Human Disease Genomics, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing 100191, China
| | - Yang Chen
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Junjie Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Xinran Lian
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing 100191, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, No. 38, Xuyuan Road, Beijing 100191, China
- Peking University Center for Human Disease Genomics, Peking University Health Science Center, No. 38, Xueyuan Road, Beijing 100191, China
| |
Collapse
|
2
|
Bahabayi A, Alimu X, Wang G, Gao Y, Chen Y, Zhao J, Lian X, Li Q, Xiong Z, Zhang Z, Wang P, Liu C. VNN2-expressing circulating monocytes exhibit unique functional characteristics and are decreased in patients with primary Sjögren's syndrome. J Autoimmun 2024; 147:103275. [PMID: 38936146 DOI: 10.1016/j.jaut.2024.103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE This study aims to elucidate the significance of VNN2 expression in peripheral blood monocytes and its clinical relevance in primary Sjögren's syndrome (pSS). METHODS We investigated VNN2 expression by analyzing single-cell RNA sequencing (scRNA-seq) data from peripheral blood mononuclear cells. Flow cytometry was used to detect and compare VNN2 expression in total monocytes, classical monocytes (cMo), intermediate monocytes (iMo) and non-classical monocytes (ncMo). Additionally, we examined the expression of HLA, ICAM1, CD62L, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 in VNN2+ and VNN2- cells. We analyzed the correlation between VNN2 expression and clinical indicators and assessed the clinical utility of VNN2+ monocytes in pSS diagnosis using receiver operating characteristic curves. RESULTS We observed high VNN2 expression in monocytes, with significantly higher levels in CD14++ monocytes compared to ncMo. VNN2+ monocytes exhibited decreased expression of HLA and CD62L and increased expression of ICAM1, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 compared to VNN2- monocytes. Although scRNA-seq data showed that VNN2 mRNA was upregulated, cell surface expression of VNN2 was decreased in monocytes from pSS patients compared to healthy controls. The reduced levels of VNN2+ monocyte subpopulations in pSS patients were negatively correlated with anti-ribosome antibody levels and positively correlated with complement 4 levels. Detection of VNN2 expression in monocytes can aid in the auxiliary diagnosis of pSS. CONCLUSION Monocytes expressing cell surface VNN2 are significantly reduced in pSS patients. This suggests a potential role for VNN2 in pSS development and its potential use as a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guochong Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Junjie Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xinran Lian
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China.
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Zhang Y, Hu J, Zhang X, Liang M, Wang X, Gan D, Li J, Lu X, Wan J, Feng S, Lu X. Protein Signature Differentiating Neutrophils and Myeloid-Derived Suppressor Cells Determined Using a Human Isogenic Cell Line Model and Protein Profiling. Cells 2024; 13:795. [PMID: 38786019 PMCID: PMC11119164 DOI: 10.3390/cells13100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jin Hu
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Xiashiyao Zhang
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Minzhi Liang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuechun Wang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jun Wan
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46556, USA
| |
Collapse
|
4
|
Takeda Y, Kato T, Sabrina S, Naito S, Ito H, Emi N, Kuboki Y, Takai Y, Fukuhara H, Ushijima M, Narisawa T, Yagi M, Kanno H, Sakurai T, Nishida H, Araki A, Shimotai Y, Nagashima M, Nouchi Y, Saitoh S, Nara H, Tsuchiya N, Asao H. Intracellular Major Histocompatibility Complex Class II and C-X-C Motif Chemokine Ligand 10-Expressing Neutrophils Indicate the State of Anti-Tumor Activity Induced by Bacillus Calmette-Guérin. Biomedicines 2023; 11:3062. [PMID: 38002062 PMCID: PMC10669614 DOI: 10.3390/biomedicines11113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Inflammatory responses induce the formation of both anti-tumor and pro-tumor neutrophils known as myeloid-derived suppressor cells (MDSCs). Intermittent intravesical infusion of Bacillus Calmette-Guérin (BCG) is an established cancer immunotherapy for non-muscle-invasive bladder cancer (NMIBC). However, the types of neutrophils induced via the inflammatory response to both tumor-bearing and BCG remain unclear. (2) Methods: We therefore analyzed neutrophil dynamics in the peripheral blood and urine of patients with NMIBC who received BCG therapy. Further, we analyzed the effects of BCG in a mouse intraperitoneal tumor model. (3) Results: BCG therapy induced the formation of CXCL10 and MHC class II-positive neutrophils in the urine of patients with NMIBC but did not induce MDSC formation. CXCL10- and MHC class II-expressing neutrophils were detected in peritoneal exudate cells formed after BCG administration. Partial neutrophil depletion using an anti-Ly6G antibody suppressed the upregulation of CXCL10 and MHC class II in neutrophils and reversed the anti-tumor activity of BCG in mouse models. (4) Conclusions: These results indicated that intracellular MHC class II- and CXCL10-expressing neutrophils indicate the state of anti-tumor activity induced via BCG. The status of neutrophils in mixed inflammation of immunosuppressive and anti-tumor responses may therefore be useful for evaluating immunological systemic conditions.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Naoto Emi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yuya Kuboki
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiroki Fukuhara
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Mayu Yagi
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hayato Nishida
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Mikako Nagashima
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yusuke Nouchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Hidetoshi Nara
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Miyagi 986-8580, Japan;
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| |
Collapse
|
5
|
Sabrina S, Takeda Y, Kato T, Naito S, Ito H, Takai Y, Ushijima M, Narisawa T, Kanno H, Sakurai T, Saitoh S, Araki A, Tsuchiya N, Asao H. Initial Myeloid Cell Status Is Associated with Clinical Outcomes of Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051296. [PMID: 37238964 DOI: 10.3390/biomedicines11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The therapeutic outcome of immune checkpoint inhibition (ICI) can be improved through combination treatments with ICI therapy. Myeloid-derived suppressor cells (MDSCs) strongly suppress tumor immunity. MDSCs are a heterogeneous cell population, originating from the unusual differentiation of neutrophils/monocytes induced by environmental factors such as inflammation. The myeloid cell population consists of an indistinguishable mixture of various types of MDSCs and activated neutrophils/monocytes. In this study, we investigated whether the clinical outcomes of ICI therapy could be predicted by estimating the status of the myeloid cells, including MDSCs. Several MDSC indexes, such as glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80), CD16, and latency-associated peptide-1 (LAP-1; transforming growth factor-β1 precursor), were analyzed via flow cytometry using peripheral blood derived from patients with advanced renal cell carcinoma (n = 51) immediately before and during the therapy. Elevated CD16 and LAP-1 expressions after the first treatment were associated with a poor response to ICI therapy. Immediately before ICI therapy, GPI-80 expression in neutrophils was significantly higher in patients with a complete response than in those with disease progression. This is the first study to demonstrate a relationship between the status of the myeloid cells during the initial phase of ICI therapy and clinical outcomes.
Collapse
Affiliation(s)
- Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
6
|
Yu W, Hu S, Yang R, Lin L, Mao C, Jin M, Gu Y, Li G, Jiang B, Gong Y, Lu E. Upregulated Vanins and their potential contribution to periodontitis. BMC Oral Health 2022; 22:614. [PMID: 36527111 PMCID: PMC9758802 DOI: 10.1186/s12903-022-02583-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although Vanins are closely related to neutrophil regulation and response to oxidative stress, and play essential roles in inflammatory diseases with clinical significance, their contribution to periodontitis remains to be determined. This research was designed to assess the expression of Vanins in human gingiva, and to define the relationship between Vanins and periodontitis. METHODS Forty-eight patients with periodontitis and forty-two periodontal healthy individuals were enrolled for gingival tissue sample collection. Expression levels of VNN1, VNN2 and VNN3 were evaluated by RT-qPCR and validated in datasets GSE10334 and GSE16134. Western blot and immunohistochemistry identified specific proteins within gingiva. The histopathological changes in gingival sections were investigated using HE staining. Correlations between Vanins and clinical parameters, PD and CAL; between Vanins and inflammation, IL1B; and between Vanins and MPO in periodontitis were investigated by Spearman's correlation analysis respectively. Associations between VNN2 and indicators of neutrophil adherence and migration were further validated in two datasets. RESULTS Vanins were at higher concentrations in diseased gingival tissues in both RT-qPCR and dataset analysis (p < 0.01). Assessment using western blot and immunohistochemistry presented significant upregulations of VNN1 and VNN2 in periodontitis (p < 0.05). The higher expression levels of Vanins, the larger the observed periodontal parameters PD and CAL (p < 0.05), and IL1B (p < 0.001). Moreover, positive correlations existed between VNN2 and MPO, and between VNN2 and neutrophil-related indicators. CONCLUSION Our study demonstrated upregulation of Vanins in periodontitis and the potential contribution of VNN2 to periodontitis through neutrophils-related pathological processes.
Collapse
Affiliation(s)
- Weijun Yu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Shucheng Hu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Ruhan Yang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Lu Lin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Chuanyuan Mao
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Min Jin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuting Gu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Guanglong Li
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Bin Jiang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuhua Gong
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Eryi Lu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
7
|
Li Z, Chen X, Dan J, Hu T, Hu Y, Liu S, Chai Y, Shi Y, Wu J, Ni H, Zhu J, Wu Y, Li N, Yu Y, Wang Z, Zhao J, Zhong N, Ren X, Shen Z, Cao X. Innate immune imprints in SARS-CoV-2 Omicron variant infection convalescents. Signal Transduct Target Ther 2022; 7:377. [PMID: 36379915 PMCID: PMC9666472 DOI: 10.1038/s41392-022-01237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 Omicron variant infection generally gives rise to asymptomatic to moderate COVID-19 in vaccinated people. The immune cells can be reprogrammed or "imprinted" by vaccination and infections to generate protective immunity against subsequent challenges. Considering the immune imprint in Omicron infection is unclear, here we delineate the innate immune landscape of human Omicron infection via single-cell RNA sequencing, surface proteome profiling, and plasma cytokine quantification. We found that monocyte responses predominated in immune imprints of Omicron convalescents, with IL-1β-associated and interferon (IFN)-responsive signatures with mild and moderate symptoms, respectively. Low-density neutrophils increased and exhibited IL-1β-associated and IFN-responsive signatures similarly. Mild convalescents had increased blood IL-1β, CCL4, IL-9 levels and PI3+ neutrophils, indicating a bias to IL-1β responsiveness, while moderate convalescents had increased blood CXCL10 and IFN-responsive monocytes, suggesting durative IFN responses. Therefore, IL-1β- or IFN-responsiveness of myeloid cells may indicate the disease severity of Omicron infection and mediate post-COVID conditions.
Collapse
Affiliation(s)
- Zhiqing Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Xiaosu Chen
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Junyan Dan
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Tianju Hu
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Ye Hu
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Shuxun Liu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yangyang Chai
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yansong Shi
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jian Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Hailai Ni
- grid.411525.60000 0004 0369 1599The Health Care Department, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Jiaqi Zhu
- grid.411525.60000 0004 0369 1599Department of Cardiology, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Yanfeng Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Nan Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yizhi Yu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | | | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou, 510300 China
| | | | | | - Zhongyang Shen
- grid.216938.70000 0000 9878 7032Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192 China
| | - Xuetao Cao
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China ,grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| |
Collapse
|
8
|
GPI-80 Augments NF-κB Activation in Tumor Cells. Int J Mol Sci 2021; 22:ijms222112027. [PMID: 34769456 PMCID: PMC8584666 DOI: 10.3390/ijms222112027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Recent studies have discovered a relationship between glycosylphosphatidylinositol (GPI)-anchored protein 80 (GPI-80)/VNN2 (80 kDa GPI-anchored protein) and malignant tumors. GPI-80 is known to regulate neutrophil adhesion; however, the action of GPI-80 on tumors is still obscure. In this study, although the expression of GPI-80 mRNA was detectable in several tumor cell lines, the levels of GPI-80 protein were significantly lower than that in neutrophils. To clarify the function of GPI-80 in tumor cells, GPI-80-expressing cells and GPI-80/VNN2 gene-deleted cells were established using PC3 prostate cancer cells. In GPI-80-expressing cells, GPI-80 was mainly detected in vesicles. Furthermore, soluble GPI-80 in the conditioned medium was associated with the exosome marker CD63 and was also detected in the plasma obtained from prostate cancer patients. Unexpectedly, cell adhesion and migration of GPI-80-expressing PC3 cells were not modulated by anti-GPI-80 antibody treatment. However, similar to the GPI-80 family molecule, VNN1, the pantetheinase activity and oxidative state were augmented in GPI-80-expressing cells. GPI-80-expressing cells facilitated non-adhesive proliferation, slow cell proliferation, NF-κB activation and IL-1β production. These phenomena are known to be induced by physiological elevation of the oxidative state. Thus, these observations indicated that GPI-80 affects various tumor responses related to oxidation.
Collapse
|
9
|
Takeda Y, Kato T, Nemoto N, Araki A, Gazi MY, Nara H, Asao H. Augmentation of the expression of the eotaxin receptor on duodenal neutrophils by IL-21. Cytokine 2018; 110:194-203. [PMID: 29778007 DOI: 10.1016/j.cyto.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/04/2023]
Abstract
Inflammation can occur via different mechanisms, such as via acute and chronic responses, on numerous occasions and function accordingly through various roles. There are more than five subsets of neutrophils; neutrophilic heterogeneity is modulated by the inflammatory condition. To understand the characteristics of inflammation, identification of atypical neutrophils is important. In this study, we found that the expression of eotaxin receptor (CD193) on atypical neutrophils in the duodenum is augmented in IL-21 isoform transgenic (Tg) mice. In a series of studies, we have established a Tg mouse strain to further investigate the functions of IL-21 in vivo. Interestingly, Tg mice immunized with ovalbumin (OVA) were more sensitive to OVA-induced systemic anaphylaxis as compared with wild type mice with duodenal and splenic gross congestion. Further analysis conducted in the duodenum of Tg mice revealed that only the number of neutrophils migrating into the duodenum was significantly increased prior to immunization. Previous studies have shown that the gastrointestinal compartment and the spleen constantly produce eotaxin, which regulates basal levels of tissue eosinophils. Therefore, we analyzed CD193 expression on neutrophils and eosinophils. As expected, its expression by duodenal neutrophils was upregulated in Tg mice. Furthermore, the addition of IL-21 into bone marrow cell culture increased the number of CD193+ neutrophils, which easily migrated into the duodenum. These observations suggested that CD193+ neutrophils increase in number under inflammatory conditions due to chronic IL-21 production.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Nobuhito Nemoto
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; Department of Orthopaedics, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Mohammad Yeashin Gazi
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hidetoshi Nara
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
10
|
Takeda Y, Shimomura T, Asao H, Wakabayashi I. Relationship between Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Amplification Circuits for Diabetes. J Diabetes Res 2017; 2017:4275851. [PMID: 28299342 PMCID: PMC5337356 DOI: 10.1155/2017/4275851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of pathogenic mechanisms is required in order to treat diseases. However, the mechanisms of diabetes mellitus and diabetic complications are extremely complex. Immune reactions are involved in the pathogenesis of diabetes and its complications, while diabetes influences immune reactions. Furthermore, both diabetes and immune reactions are influenced by genetic and environmental factors. To address these issues, animal models are useful tools. So far, various animal models of diabetes have been developed in rats, which have advantages over mice models in terms of the larger volume of tissue samples and the variety of type 2 diabetes models. In this review, we introduce rat models of diabetes and summarize the immune reactions in diabetic rat models. Finally, we speculate on the relationship between immune reactions and diabetic episodes. For example, diabetes-prone Biobreeding rats, type 1 diabetes model rats, exhibit increased autoreactive cellular and inflammatory immune reactions, while Goto-Kakizaki rats, type 2 diabetes model rats, exhibit increased Th2 reactions and attenuation of phagocytic activity. Investigation of immunological abnormalities in various diabetic rat models is useful for elucidating complicated mechanisms in the pathophysiology of diabetes. Studying immunological alterations, such as predominance of Th1/17 or Th2 cells, humoral immunity, and innate immune reactions, may improve understanding the structure of amplification circuits for diabetes in future studies.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
- *Yuji Takeda:
| | - Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|