1
|
Sanchez-Vargas LA, Mathew A, Salje H, Sousa D, Casale NA, Farmer A, Buddhari D, Anderson K, Iamsirithaworn S, Kaewhiran S, Friberg H, Currier JR, Rothman AL. Protective Role of NS1-Specific Antibodies in the Immune Response to Dengue Virus Through Antibody-Dependent Cellular Cytotoxicity. J Infect Dis 2024; 230:1147-1156. [PMID: 38478732 PMCID: PMC11565885 DOI: 10.1093/infdis/jiae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Dengue virus (DENV) nonstructural protein 1 (NS1) has multiple functions within infected cells, on the cell surface, and in secreted form, and is highly immunogenic. Immunity from previous DENV infections is known to exert both positive and negative effects on subsequent DENV infections, but the contribution of NS1-specific antibodies to these effects is incompletely understood. METHODS We investigated the functions of NS1-specific antibodies and their significance in DENV infection. We analyzed plasma samples collected in a prospective cohort study prior to symptomatic or subclinical secondary DENV infection. We measured binding to purified recombinant NS1 protein and to NS1-expressing CEM cells, antibody-mediated natural killer (NK) cell activation by plate-bound NS1 protein, and antibody-dependent cellular cytotoxicity (ADCC) of NS1-expressing target cells. RESULTS We found that antibody responses to NS1 were highly serotype cross-reactive and that subjects who experienced subclinical DENV infection had significantly higher antibody responses to NS1 in preinfection plasma than subjects who experienced symptomatic infection. We observed strong positive correlations between antibody binding and NK activation. CONCLUSIONS These findings demonstrate the involvement of NS1-specific antibodies in ADCC and provide evidence for a protective effect of NS1-specific antibodies in secondary DENV infection.
Collapse
Affiliation(s)
- Luis A Sanchez-Vargas
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Anuja Mathew
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David Sousa
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Nicole A Casale
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| | - Aaron Farmer
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kathryn Anderson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sopon Iamsirithaworn
- Department of Communicable Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Chandler TL, Yang A, Otero CE, Permar SR, Caddy SL. Protective mechanisms of nonneutralizing antiviral antibodies. PLoS Pathog 2023; 19:e1011670. [PMID: 37796829 PMCID: PMC10553219 DOI: 10.1371/journal.ppat.1011670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.
Collapse
Affiliation(s)
- Tawny L. Chandler
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Agnes Yang
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Claire E. Otero
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Sarah L. Caddy
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Gyurova IE, Ali A, Waggoner SN. Natural Killer Cell Regulation of B Cell Responses in the Context of Viral Infection. Viral Immunol 2019; 33:334-341. [PMID: 31800366 DOI: 10.1089/vim.2019.0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Secretion of both neutralizing and nonneutralizing virus-specific antibodies by B cells is a key component of immune control of many virus infections and a critical benchmark of successful preventative vaccines. Natural killer (NK) cells also play a vital role in antiviral immune defense via cytolytic elimination of infected cells and production of proinflammatory antiviral cytokines. Accumulating evidence points to multifaceted crosstalk between NK cells and antiviral B cell responses that can determine virus elimination, pathogenesis of infection, and efficacy of vaccine-elicited protection. These outcomes are a result of both positive and negative influences of NK cells on the B cell responses, as well as canonical antiviral killing of infected B cells. On one hand, NK cell-derived cytokines such as interferon-gamma (IFN-γ) may promote B cell activation and enhance immunoglobulin production. In contrast, NK cell immunoregulatory killing of CD4 T cells can limit affinity maturation in germinal centers resulting in weak infection or vaccine induction of antiviral neutralizing antibodies. In this review, we will discuss these and other dueling contributions of NK cells to B cell responses during virus infection or vaccination.
Collapse
Affiliation(s)
- Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati, Cincinnati, Ohio, USA.,Graduate Program in Immunology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati, Cincinnati, Ohio, USA.,Graduate Program in Immunology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Keck ML, Wrensch F, Pierce BG, Baumert TF, Foung SKH. Mapping Determinants of Virus Neutralization and Viral Escape for Rational Design of a Hepatitis C Virus Vaccine. Front Immunol 2018; 9:1194. [PMID: 29904384 PMCID: PMC5991293 DOI: 10.3389/fimmu.2018.01194] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) continues to spread worldwide with an annual increase of 1.75 million new infections. The number of HCV cases in the U.S. is now greater than the number of HIV cases and is increasing in young adults because of the opioid epidemic sweeping the country. HCV-related liver disease is the leading indication of liver transplantation. An effective vaccine is of paramount importance to control and prevent HCV infection. While this vaccine will need to induce both cellular and humoral immunity, this review is focused on the required antibody responses. For highly variable viruses, such as HCV, isolation and characterization of monoclonal antibodies mediating broad virus neutralization are an important guide for vaccine design. The viral envelope glycoproteins, E1 and E2, are the main targets of these antibodies. Epitopes on the E2 protein have been studied more extensively than epitopes on E1, due to higher antibody targeting that reflects these epitopes having higher degrees of immunogenicity. E2 epitopes are overall organized in discrete clusters of overlapping epitopes that ranged from high conservation to high variability. Other epitopes on E1 and E1E2 also are targets of neutralizing antibodies. Taken together, these regions are important for vaccine design. Another element in vaccine design is based on information on how the virus escapes from broadly neutralizing antibodies. Escape mutations can occur within the epitopes that are involved in antibody binding and in regions that are not involved in their epitopes, but nonetheless reduce the efficiency of neutralizing antibodies. An understanding on the specificities of a protective B cell response, the molecular locations of these epitopes on E1, E2, and E1E2, and the mechanisms, which enable the virus to negatively modulate neutralizing antibody responses to these regions will provide the necessary guidance for vaccine design.
Collapse
Affiliation(s)
- Mei-Le Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Florian Wrensch
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Thomas F Baumert
- INSERM U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology 2017; 514:30-41. [PMID: 29128754 DOI: 10.1016/j.virol.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine.
Collapse
|
6
|
Rahe MC, Murtaugh MP. Mechanisms of Adaptive Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2017; 9:v9060148. [PMID: 28608816 PMCID: PMC5490824 DOI: 10.3390/v9060148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
The adaptive immune response is necessary for the development of protective immunity against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The immunological mechanisms by which primary and memory protection are generated and used are not well understood. Here, we summarize current knowledge regarding cellular and humoral components of the adaptive immune response to PRRSV infection that mediate primary and memory immune protection against viruses.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|