1
|
Cammarata I, Pinna V, Pacella I, Rotella I, Soresina A, Badolato R, Plebani A, Pignata C, Cirillo E, Zicari AM, Violi F, Carnevale R, Loffredo L, Piconese S. In adult X-CGD patients, regulatory T cells are expanded while activated T cells display a NOX2-independent ROS increase. Immunol Lett 2024; 266:106839. [PMID: 38309375 DOI: 10.1016/j.imlet.2024.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
The X-linked chronic granulomatous disease (X-CGD), a rare genetic disease characterised by recurrent infections, is caused by mutations of NOX2. Significant proportions of X-CGD patients display signs of immune dysregulation. Regulatory T cells (Tregs) are CD4+T lymphocytes that expand in active inflammation and prevent autoimmune disorders. Here we asked whether X-CGD is associated to Treg dysfunctions in adult patients. To this aim, the frequency of Tregs was analysed through intracellular flow cytometry in a cohort of adult X-CGD patients, carriers and controls. We found that Tregs were significantly expanded and activated in blood of adult X-CGD patients, and this was associated with activation of conventional CD4+T cells (Tconvs). T cell activation was characterised by accumulation of intracellular ROS, not derived from NOX2 but likely produced by cellular metabolism. The higher TNF production by Tconvs in X-CGD patients might contribute to the expansion of Tregs through the TNFR2 receptor. In summary, our data indicate that Tregs expand in adult X-CGD in response to immune activation, and that the increase of NOX2-independent ROS content is a feature of activated T cells.
Collapse
Affiliation(s)
- Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valeria Pinna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Pacella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ivano Rotella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, ASST-Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, ASST-Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, ASST-Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences - Section of Pediatrics, Federico II University of Naples, Naples, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; Mediterranea Cardiocentro-Napoli, Naples, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS Neuromed, Località Camerelle, Pozzilli, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy; Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
2
|
Al B, Bruno M, Röring RJ, Moorlag SJCFM, Suen TK, Klück V, Liu R, Debisarun PA, Gaal O, Bhat J, Kabelitz D, van de Veerdonk FL, Joosten LAB, Netea MG, Placek K. Peripheral T Cell Populations are Differentially Affected in Familial Mediterranean Fever, Chronic Granulomatous Disease, and Gout. J Clin Immunol 2023; 43:2033-2048. [PMID: 37714974 PMCID: PMC10661758 DOI: 10.1007/s10875-023-01576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
Both innate errors of immunity, such as familial Mediterranean fever (FMF) and chronic granulomatous disease (CGD), and the common inflammatory disease gout are characterized by episodes of sterile inflammatory attacks in the absence of an infection. While these disorders encompass distinct pathologies due to differentially affected metabolic pathways and inflammasome activation mechanisms, their common features are the excessive production of interleukin (IL)-1ß and innate immune cell hyperreactivity. On the other hand, the role of T cells and innate-like lymphocytes such as gamma delta (γδ) T cells in these pathologies is ill-defined. In order to widen our understanding of T cell involvement in CGD, FMF and gout pathology, we developed multicolour immunophenotyping panels for flow cytometry to characterize γδ T cells as well as CD4 and CD8 T cell populations in terms of their cytokine production, activation status, memory or naive phenotypes, exhaustion status, homing receptor expression, and cytotoxic activity. Our study is the first deep immunophenotyping analysis of T cell populations in CGD, FMF, and gout patients. We found that CGD affects the frequencies and activation status of T cells, while gout impairs the cytokine production capacity of Vδ2 T cells. FMF was characterized by decreased percentages of regulatory T cells in circulation and attenuated IFN-γ production capacity by Vδ2 T cells. Autoinflammatory syndromes and congenital defects of phagocyte differentially affect T cell compartments. Future studies are warranted to assess whether these phenotypical changes are relevant for disease pathology.
Collapse
Affiliation(s)
- Burcu Al
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tsz Kin Suen
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Viola Klück
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruiqi Liu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Priya A Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Orsolya Gaal
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Katarzyna Placek
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
6
|
Mani S, Duraipandian C, Chidambaram SB. Analgesic, anti-inflammatory and acute oral toxicity profile of leaf and bark extracts of Albizia procera. BMC Complement Med Ther 2022; 22:50. [PMID: 35216561 PMCID: PMC8881870 DOI: 10.1186/s12906-021-03497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pain and inflammation are associatory events in cancer, diabetes, cardiovascular diseases, arthritis and other chronic diseases. Corticosteroids, non-steroidal anti-inflammatory drugs exert potential side effects on long term use. This study was aimed to investigate the acute oral toxicity, anti-inflammatory and analgesic activities of leaf and bark extracts of Albizia procera in experimental animal models. Methods Ethyl acetate, ethanol, and hydroalcoholic extracts of Albizia procera (leaf and bark) were subjected for acute oral toxicity, anti-inflammatory and analgesic screening. Carrageenan and cotton pellet granuloma models were used to assess acute and chronic anti-inflammatory effects, respectively. Intraplanar formalin test was used to assess the analgesic activity. Results All the extracts of Albizia procera were found to be well-tolerated up to 2000 mg/kg in female rats. Ethanolic leaf (ETLE) and bark (ETBE) of Albizia procera showed anti-inflammatory actions. But, only ETBE produced significant protection in chronic inflammation and analgesic activity. Conclusion In summary, Albizia procera possess significant anti-inflammatory and analgesic properties. This study adds evidence on the traditional use of Albizia procera plant for treating painful inflammatory disorders.
Collapse
Affiliation(s)
- Sangeetha Mani
- Dept of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - Chamundeeswari Duraipandian
- Dept of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Saravana Babu Chidambaram
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
7
|
Hafkamp FMJ, Groot Kormelink T, de Jong EC. Targeting DCs for Tolerance Induction: Don't Lose Sight of the Neutrophils. Front Immunol 2021; 12:732992. [PMID: 34675923 PMCID: PMC8523850 DOI: 10.3389/fimmu.2021.732992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.
Collapse
Affiliation(s)
| | | | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Mortimer PM, Mc Intyre SA, Thomas DC. Beyond the Extra Respiration of Phagocytosis: NADPH Oxidase 2 in Adaptive Immunity and Inflammation. Front Immunol 2021; 12:733918. [PMID: 34539670 PMCID: PMC8440999 DOI: 10.3389/fimmu.2021.733918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) derived from the phagocyte NADPH oxidase (NOX2) are essential for host defence and immunoregulation. Their levels must be tightly controlled. ROS are required to prevent infection and are used in signalling to regulate several processes that are essential for normal immunity. A lack of ROS then leads to immunodeficiency and autoinflammation. However, excess ROS are also deleterious, damaging tissues by causing oxidative stress. In this review, we focus on two particular aspects of ROS biology: (i) the emerging understanding that NOX2-derived ROS play a pivotal role in the development and maintenance of adaptive immunity and (ii) the effects of excess ROS in systemic disease and how limiting ROS might represent a therapeutic avenue in limiting excess inflammation.
Collapse
Affiliation(s)
- Paige M Mortimer
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| | - Stacey A Mc Intyre
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| | - David C Thomas
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
9
|
Cencioni C, Comunanza V, Middonti E, Vallariello E, Bussolino F. The role of redox system in metastasis formation. Angiogenesis 2021; 24:435-450. [PMID: 33909153 PMCID: PMC8292271 DOI: 10.1007/s10456-021-09779-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
The metastatic cancer disease represents the real and urgent clinical need in oncology. Therefore, an understanding of the complex molecular mechanisms sustaining the metastatic cascade is critical to advance cancer therapies. Recent studies highlight how redox signaling influences the behavior of metastatic cancer cells, contributes to their travel in bloodstream from the primary tumor to the distant organs and conditions the progression of the micrometastases or their dormant state. Radical oxygen species not only regulate intracellular processes but participate to paracrine circuits by diffusion to nearby cells, thus assuming unpredicted roles in the communication between metastatic cancer cells, blood circulating cells, and stroma cells at site of colonization. Here, we review recent insights in the role of radical oxygen species in the metastasis formation with a special focus on extravasation at metastatic sites.
Collapse
Affiliation(s)
- Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), 00185, Rome, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute - IRCCS-FPO, 10063, Candiolo, Italy
| | - Emanuele Middonti
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute - IRCCS-FPO, 10063, Candiolo, Italy
| | - Edoardo Vallariello
- Department of Oncology, University of Torino, 10043, Orbassano, Italy
- Candiolo Cancer Institute - IRCCS-FPO, 10063, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10043, Orbassano, Italy.
- Candiolo Cancer Institute - IRCCS-FPO, 10063, Candiolo, Italy.
- , Strada Provinciale di Piobesi 142, Km 3.95, 10060, Candiolo, Italy.
| |
Collapse
|
10
|
Kvedaraite E. Neutrophil-T cell crosstalk in inflammatory bowel disease. Immunology 2021; 164:657-664. [PMID: 34240423 PMCID: PMC8561100 DOI: 10.1111/imm.13391] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are the most abundant leucocytes in human blood, promptly recruited to the site of tissue injury, where they orchestrate inflammation and tissue repair. The multifaceted functions of neutrophils have been more appreciated during the recent decade, and these cells are now recognized as sophisticated and essential players in infection, cancer and chronic inflammatory diseases. Consequently, our understanding of the role of neutrophils in inflammatory bowel disease (IBD), their immune responses and their ability to shape adaptive immunity in the gut have been recognized. Here, current knowledge on neutrophil responses in IBD and their capacity to influence T cells are summarized with an emphasis on the role of these cells in human disease.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|