1
|
Shen C, Zhu X, Chang H, Li C, Hou M, Chen L, Lu Chen, Zhou Z, Ji M, Xu Z. The rebalancing of the immune system at the maternal-fetal interface ameliorates autism-like behavior in adult offspring. Cell Rep 2024; 43:114787. [PMID: 39321022 DOI: 10.1016/j.celrep.2024.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.
Collapse
Affiliation(s)
- Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Hao Chang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Chen Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lin Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Lu Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China
| | - Zikai Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, P.R. China.
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing, Jiangsu 211166, P.R. China; NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
| |
Collapse
|
2
|
Dong S, Fu C, Shu C, Xie M, Li Y, Zou J, Meng YZ, Xu P, Shan YH, Tian HM, He J, Yang YG, Hu Z. Development of a humanized mouse model with functional human materno-fetal interface immunity. JCI Insight 2024; 9:e176527. [PMID: 39435662 DOI: 10.1172/jci.insight.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Materno-fetal immunity possesses specialized characteristics to ensure pathogen clearance while maintaining tolerance to the semiallogeneic fetus. Most of our understanding on human materno-fetal immunity is based on conventional rodent models that may not precisely represent human immunological processes owing to the huge evolutionary divergence. Herein, we developed a pregnant human immune system (HIS) mouse model through busulfan preconditioning, which hosts multilineage human immune subset reconstitution at the materno-fetal interface. Human materno-fetal immunity exhibits a tolerogenic feature at the midgestation stage (embryonic day [E] 14.5), and human immune regulatory subsets were detected in the decidua. However, the immune system switches to an inflammatory profile at the late gestation stage (E19). A cell-cell interaction network contributing to the alternations in the human materno-fetal immune atmosphere was revealed based on single-cell RNA-Seq analysis, wherein human macrophages played crucial roles by secreting several immune regulatory mediators. Furthermore, depletion of Treg cells at E2.5 and E5.5 resulted in severe inflammation and fetus rejection. Collectively, these results demonstrate that the pregnant HIS mouse model permits the development of functional human materno-fetal immunity and offers a tool for human materno-fetal immunity investigation to facilitate drug discovery for reproductive disorders.
Collapse
Affiliation(s)
- Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yan-Hong Shan
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Hui-Min Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics, Obstetrics and Gynaecology Center, The First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
3
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
4
|
Wood H, Acharjee A, Pearce H, Quraishi MN, Powell R, Rossiter A, Beggs A, Ewer A, Moss P, Toldi G. Breastfeeding promotes early neonatal regulatory T-cell expansion and immune tolerance of non-inherited maternal antigens. Allergy 2021; 76:2447-2460. [PMID: 33432577 DOI: 10.1111/all.14736] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breastfeeding is associated with long-term health benefits, such as a lower incidence of childhood infections, asthma, obesity and autoimmune disorders. However, little is known regarding how the maternal and neonatal immune systems interact after parturition when the neonate receives nutrition from maternal breast milk. METHODS We undertook a comparative analysis of immune repertoire and function at birth and 3 weeks of age in a cohort of 38 term neonates born by caesarean section grouped according to feeding method (breast milk versus formula). We used flow cytometry to study the immune phenotype in neonatal and maternal blood samples and mixed lymphocyte reactions to establish the proliferation response of neonatal versus maternal lymphocytes and vice versa. The microbiome of neonatal stool samples was also investigated using 16S rRNA sequencing. RESULTS We show that the proportion of regulatory T cells (Tregs) increases in this period and is nearly twofold higher in exclusively breastfed neonates compared with those who received formula milk only. Moreover, breastfed neonates show a specific and Treg-dependent reduction in proliferative T-cell responses to non-inherited maternal antigens (NIMA), associated with a reduction in inflammatory cytokine production. We also observed the enrichment of short chain fatty acid producing taxa (Veillonella and Gemella) in stool samples of exclusively breastfed neonates. CONCLUSIONS These data indicate that exposure of the neonate to maternal cells through breastfeeding acts to drive the maturation of Tregs and 'tolerizes' the neonate towards NIMA.
Collapse
Affiliation(s)
- Hannah Wood
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Neonatology, Birmingham Women's and Children's NHS FT, Birmingham, UK
| | - Animesh Acharjee
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS FT, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS FT, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Richard Powell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Amanda Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrew Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew Ewer
- Department of Neonatology, Birmingham Women's and Children's NHS FT, Birmingham, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Gergely Toldi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Department of Neonatology, Birmingham Women's and Children's NHS FT, Birmingham, UK
| |
Collapse
|
5
|
Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol 2020; 42:413-429. [PMID: 32894326 PMCID: PMC7508962 DOI: 10.1007/s00281-020-00807-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) complicates 5–18% of pregnancies globally and is a leading cause of maternal and fetal morbidity and mortality. Most PTB is spontaneous and idiopathic, with largely undefined causes. To increase understanding of PTB, much research in recent years has focused on using animal models to recapitulate the pathophysiology of PTB. Dysfunctions of maternal immune adaptations have been implicated in a range of pregnancy pathologies, including PTB. A wealth of evidence arising from mouse models as well as human studies is now available to support that PTB results from a breakdown in fetal-maternal tolerance, along with excessive, premature inflammation. In this review, we examine the current knowledge of the bidirectional communication between fetal and maternal systems and its role in the immunopathogenesis of PTB. These recent insights significantly advance our understanding of the pathogenesis of PTB, which is essential to ultimately designing more effective strategies for early prediction and subsequent prevention of PTB.
Collapse
Affiliation(s)
- Ella Shana Green
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany.
| |
Collapse
|
6
|
Saeed Z, Greer O, Shah NM. Is the Host Viral Response and the Immunogenicity of Vaccines Altered in Pregnancy? Antibodies (Basel) 2020; 9:E38. [PMID: 32759839 PMCID: PMC7551810 DOI: 10.3390/antib9030038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
The intricacy of the maternal immune system arises from its ability to prevent a maternal immune response against a semi-allogenic fetus, while protecting the mother against harmful pathogens. However, these immunological adaptations may also make pregnant women vulnerable to developing adverse complications from respiratory viral infections. While the influenza and SARS pandemics support this theory, there is less certainty regarding the clinical impact of SARS-CoV-2 in pregnancy. In the current COVID-19 pandemic, vaccine development is key to public preventative strategies. Whilst most viral vaccines are able to induce a seroprotective antibody response, in some high-risk individuals this may not correlate with clinical protection. Some studies have shown that factors such as age, gender, and chronic illnesses can reduce their effectiveness and in this review, we discuss how pregnancy may affect the efficacy and immunogenicity of vaccines. We present literature to support the hypothesis that pregnant women are more susceptible to respiratory viral infections and may not respond to vaccines as effectively. In particular, we focus on the clinical implications of important respiratory viral infections such as influenza during pregnancy, and the pregnancy induced alterations in important leukocytes such as TFH, cTFH and B cells, which play an important role in generating long-lasting and high-affinity antibodies. Finally, we review how this may affect the efficacy of vaccines against influenza in pregnancy and highlight areas that require further research.
Collapse
Affiliation(s)
| | | | - Nishel Mohan Shah
- Academic Department of Obstetrics & Gynaecology, Imperial College London, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK; (Z.S.); (O.G.)
| |
Collapse
|
7
|
Huang N, Chi H, Qiao J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front Immunol 2020; 11:1023. [PMID: 32676072 PMCID: PMC7333773 DOI: 10.3389/fimmu.2020.01023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that function as suppressive immune cells and inhibit various elements of immune response in vitro and in vivo. While there are constraints on the number or function of Tregs which can be exploited to evoke an effective anti-tumor response, sufficient expansion of Tregs is essential for successful organ transplantation and for promoting tolerance of self and foreign antigens. The immune-suppressive property of Tregs equips this T lymphocyte subpopulation with a pivotal role in the establishment and maintenance of maternal tolerance to fetal alloantigens, which is necessary for successful pregnancy. Elevation in the level of pregnancy-related hormones including estrogen, progesterone and human chorionic gonadotropin promotes the recruitment and expansion of Tregs, directly implicating these cells in the regulation of fetal-maternal immune tolerance. Current studies have provided evidence that a defect in the number or function of Tregs contributes to the etiology of several reproductive diseases, such as recurrent spontaneous abortion, endometriosis, and pre-eclampsia. In this review, we provide insight into the underlying mechanism through which Tregs contribute to pregnancy-related immune tolerance and demonstrate the association between deficiencies in Tregs and the development of reproductive diseases.
Collapse
Affiliation(s)
- Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Bruno V, Corrado G, Baci D, Chiofalo B, Carosi MA, Ronchetti L, Piccione E, Albini A, Noonan DM, Piaggio G, Vizza E. Endometrial Cancer Immune Escape Mechanisms: Let Us Learn From the Fetal-Maternal Interface. Front Oncol 2020; 10:156. [PMID: 32226771 PMCID: PMC7080858 DOI: 10.3389/fonc.2020.00156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
The immune escape mechanisms at the base of tumor progression in endometrial cancer mimic immune tolerance mechanisms occurring at the maternal-fetal interface. The biological and immunological processes behind the maternal-fetal interface are finely tuned in time and space during embryo implantation and subsequent pregnancy stages; conversely, those behind cancer progression are often aberrant. The environment composition at the maternal-fetal interface parallels the pro-tumor microenvironment identified in many cancers, pointing to the possibility for the use of the maternal-fetal interface as a model to depict immune therapeutic targets in cancer. The framework of cancer environment signatures involved in immune adaptations, precisely timed in cancer progression, could reveal a specific "immune clock" in endometrial cancer, which might guide clinicians in patient risk class assessment, diagnostic workup, management, surgical and therapeutic approach, and surveillance strategies. Here, we review studies approaching this hypothesis, focusing on what is known so far about oncofetal similarities in immunity with the idea to individualize personalized immunotherapy targets, through the downregulation of the immune escape stage or the reactivation of the pro-inflammatory processes suppressed by the tumor.
Collapse
Affiliation(s)
- Valentina Bruno
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corrado
- Gynecologic Oncology Unit, Department of Women and Children Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Denisa Baci
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Antonia Carosi
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Livia Ronchetti
- Anatomy Pathology Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Emilio Piccione
- Section of Gynecology, Academic Department of Surgical Sciences, Tor Vergata University Hospital, University of Rome "Tor Vergata", Rome, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|