1
|
Wang P, Xu J, You W, Li J, Yu J, Jiang F, Zhang Z, Hu W, Li B. CYP24A1 Binding to FUS Maintains Tumor Properties by Regulating the miR-200c/ZEB1/EMT Axis. Cancer Sci 2025. [PMID: 39777777 DOI: 10.1111/cas.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The active vitamin D-degrading enzyme (CYP24A1) is commonly overexpressed in various types of cancer, which is associated with poor prognosis in cancer patients. Recent studies highlight the antagonism of CYP24A1 toward the anticancer role of active vitamin D. However, the impact of CYP24A1 on tumorigenesis and its underlying mechanisms largely remains unexplored. This study also found that high CYP24A1 mRNA expressions were associated with poor prognosis in ovarian cancer and lung adenocarcinoma (LUAD) patients. Moreover, we demonstrated that the overexpression of CYP24A1 accelerated the proliferation, migration, and invasion of ovarian cancer and LUAD cancer cells in vitro. Furthermore, knockdown of CYP24A1 displayed an anticancer effector both in vitro and in vivo. Mechanically, 87-297 amino acid motif of CYP24A1 bound specifically to FUS protein, consequentially reducing FUS affinity for miR-200c. Considering FUS promotes gene silencing by binding to microRNA targets, a decrease in miR-200c levels led to a notable activation of its target ZEB1, resulting in the promotion of the epithelial-mesenchymal transition (EMT) process. In conclusion, FUS binding specifically by CYP24A1 impaired miR-200c-mediated ZEB1 silencing, thereby augmenting EMT progression and tumorigenesis. These findings elucidate a fundamental mechanism by which CYP24A1 operates as an oncogene, offering potential targets for therapeutic interventions in cancer treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiming Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Infectious Disease Surveillance and Early Warning, Qingdao Municipal Health Commission, Qingdao, China
| | - Weijing You
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Yantai Hi-Tech Industrial Development Zone Center for Disease Control and Prevention, Yantai, China
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Maciejewski A, Lacka K. Vitamin D-Related Genes and Thyroid Cancer-A Systematic Review. Int J Mol Sci 2022; 23:13661. [PMID: 36362448 PMCID: PMC9658610 DOI: 10.3390/ijms232113661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 10/29/2023] Open
Abstract
Vitamin D, formerly known for its role in calcium-phosphorus homeostasis, was shown to exert a broad influence on immunity and on differentiation and proliferation processes in the last few years. In the field of endocrinology, there is proof of the potential role of vitamin D and vitamin D-related genes in the pathogenesis of thyroid cancer-the most prevalent endocrine malignancy. Therefore, the study aimed to systematically review the publications on the association between vitamin D-related gene variants (polymorphisms, mutations, etc.) and thyroid cancer. PubMed, EMBASE, Scopus, and Web of Science electronic databases were searched for relevant studies. A total of ten studies were found that met the inclusion criteria. Six vitamin D-related genes were analyzed (VDR-vitamin D receptor, CYP2R1-cytochrome P450 family 2 subfamily R member 1, CYP24A1-cytochrome P450 family 24 subfamily A member 1, CYP27B1-cytochrome P450 family 27 subfamily B member 1, DHCR7-7-dehydrocholesterol reductase and CUBN-cubilin). Moreover, a meta-analysis was conducted to summarize the data from the studies on VDR polymorphisms (rs2228570/FokI, rs1544410/BsmI, rs7975232/ApaI and rs731236/TaqI). Some associations between thyroid cancer risk (VDR, CYP24A1, DHCR7) or the clinical course of the disease (VDR) and vitamin D-related gene polymorphisms were described in the literature. However, these results seem inconclusive and need validation. A meta-analysis of the five studies of common VDR polymorphisms did not confirm their association with increased susceptibility to differentiated thyroid cancer. Further efforts are necessary to improve our understanding of thyroid cancer pathogenesis and implement targeted therapies for refractory cases.
Collapse
Affiliation(s)
| | - Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60355 Poznan, Poland
| |
Collapse
|
3
|
Coperchini F, Greco A, Croce L, Petrosino E, Grillini B, Magri F, Chiovato L, Rotondi M. Vitamin D Reduces Thyroid Cancer Cells Migration Independently From the Modulation of CCL2 and CXCL8 Chemokines Secretion. Front Endocrinol (Lausanne) 2022; 13:876397. [PMID: 35498406 PMCID: PMC9044905 DOI: 10.3389/fendo.2022.876397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vitamin D3 is largely involved in the regulation of calcium homeostasis. More recently, it was demonstrated that vitamin D exerts several beneficial effects against cancer progression through several mechanisms, including the reduction of cancer cells proliferation and migration. CXCL8 and CCL2 are two chemokines secreted by thyroid tumor cells. In the thyroid tumor microenvironment, these chemokines exert several pro-tumorigenic effects including the one to increase the metastatic potential. The aim of the present study was to investigate if vitamin D could modulate both thyroid cancer cell migration and their ability to secrete CCL2 and CXCL8. METHODS TPC-1 (RET/PTC rearranged) and 8505C (BRAFV600e mutated) thyroid cancer cell lines were treated with increasing concentrations of 1,25-OH-vitamin D3 (0-1,000 nM). Cell viability was assessed by WST-1 assay, cell migration was evaluated by transwell-migration chamber system, and CCL2 and CXCL8 levels were measured in the cell culture supernatants by ELISA. RESULTS Vitamin D did not affect cell viability but reduced, in a dose-dependent and significant manner, thyroid cancer cell migration (ANOVAs p < 0.05 for both TPC-1 and 8505C). Vitamin D differently modulated the secretion of CCL2 and CXCL8, by significantly inhibiting the secretion of CCL2 in both thyroid cancer cell lines and inhibiting the secretion of CXCL8 only in TPC-1 (ANOVAs p < 0.05). CONCLUSIONS Vitamin D treatment of thyroid cancer cell lines reduces cell migration independently from the inhibition of the secretion of pro-tumorigenic chemokines. Future studies specifically designed at clarifying the pathways involved in the different inhibitory effects of vitamin D on CCL2 and CXCL8 in thyroid cancer cells appear worthwhile.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, PHD Course in Experimental Medicine, University of Pavia, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Elena Petrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Beatrice Grillini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- *Correspondence: Mario Rotondi,
| |
Collapse
|
4
|
Máčová L, Bičíková M. Vitamin D: Current Challenges between the Laboratory and Clinical Practice. Nutrients 2021; 13:1758. [PMID: 34064098 PMCID: PMC8224373 DOI: 10.3390/nu13061758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin D is a micronutrient with pleiotropic effects in humans. Due to sedentary lifestyles and increasing time spent indoors, a growing body of research is revealing that vitamin D deficiency is a global problem. Despite the routine measurement of vitamin D in clinical laboratories and many years of efforts, methods of vitamin D analysis have yet to be standardized and are burdened with significant difficulties. This review summarizes several key analytical and clinical challenges that accompany the current methods for measuring vitamin D. According to an external quality assessment, methods and laboratories still produce a high degree of variability. Structurally similar metabolites are a source of significant interference. Furthermore, there is still no consensus on the normal values of vitamin D in a healthy population. These and other problems discussed herein can be a source of inconsistency in the results of research studies.
Collapse
Affiliation(s)
- Ludmila Máčová
- Institute of Endocrinology, Národni 8, 11694 Prague, Czech Republic;
| | | |
Collapse
|
5
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
6
|
Huang W, Ray P, Ji W, Wang Z, Nancarrow D, Chen G, Galbán S, Lawrence TS, Beer DG, Rehemtulla A, Ramnath N, Ray D. The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity. J Biol Chem 2020; 295:5906-5917. [PMID: 32165494 DOI: 10.1074/jbc.ra119.011869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/05/2020] [Indexed: 11/06/2022] Open
Abstract
We previously reported that overexpression of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) increases lung cancer cell proliferation by activating RAS signaling and that CYP24A1 knockdown inhibits tumor growth. However, the mechanism of CYP24A1-mediated cancer cell proliferation remains unclear. Here, we conducted cell synchronization and biochemical experiments in lung adenocarcinoma cells, revealing a link between CYP24A1 and anaphase-promoting complex (APC), a key cell cycle regulator. We demonstrate that CYP24A1 expression is cell cycle-dependent; it was higher in the G2-M phase and diminished upon G1 entry. CYP24A1 has a functional destruction box (D-box) motif that allows binding with two APC adaptors, CDC20-homologue 1 (CDH1) and cell division cycle 20 (CDC20). Unlike other APC substrates, however, CYP24A1 acted as a pseudo-substrate, inhibiting CDH1 activity and promoting mitotic progression. Conversely, overexpression of a CYP24A1 D-box mutant compromised CDH1 binding, allowing CDH1 hyperactivation, thereby hastening degradation of its substrates cyclin B1 and CDC20, and accumulation of the CDC20 substrate p21, prolonging mitotic exit. These activities also occurred with a CYP24A1 isoform 2 lacking the catalytic cysteine (Cys-462), suggesting that CYP24A1's oncogenic potential is independent of its catalytic activity. CYP24A1 degradation reduced clonogenic survival of mutant KRAS-driven lung cancer cells, and calcitriol treatment increased CYP24A1 levels and tumor burden in Lsl-KRASG12D mice. These results disclose a catalytic activity-independent growth-promoting role of CYP24A1 in mutant KRAS-driven lung cancer. This suggests that CYP24A1 could be therapeutically targeted in lung cancers in which its expression is high.
Collapse
Affiliation(s)
- Wei Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Paramita Ray
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Wenbin Ji
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Zhuwen Wang
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Derek Nancarrow
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Guoan Chen
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Stefanie Galbán
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - David G Beer
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Nithya Ramnath
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109; Veterans Administration, Ann Arbor Healthcare System, Ann Arbor, Michigan 48105.
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
7
|
Zou M, Baitei EY, BinEssa HA, Al-Mohanna FA, Parhar RS, St-Arnaud R, Kimura S, Pritchard C, Alzahrani AS, Assiri AM, Meyer BF, Shi Y. Cyp24a1 Attenuation Limits Progression of BrafV600E -Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAF V600E Inhibitor PLX4720. Cancer Res 2017; 77:2161-2172. [PMID: 28242615 DOI: 10.1158/0008-5472.can-16-2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
CYP24A1, the primary inactivating enzyme for vitamin D, is often overexpressed in human cancers, potentially neutralizing the antitumor effects of calcitriol, the active form of vitamin D. However, it is unclear whether CYP24A1 expression serves as a functional contributor versus only a biomarker for tumor progression. In this study, we investigated the role of CYP24A1 on malignant progression of a murine model of BrafV600E -induced papillary thyroid cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) developed PTC at 5 weeks of age. Mice harboring a homozygous deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction in tumor growth. Notably, we found the tumorigenic potential of BVECyp24a1-null-derived tumor cells to be nearly abolished in immunocompromised nude mice. This phenotype was associated with downregulation of the MAPK, PI3K/Akt, and TGFβ signaling pathways and a loss of epithelial-mesenchymal transition (EMT) in BVECyp24a1-null cells, associated with downregulation of genes involved in EMT, tumor invasion, and metastasis. While calcitriol treatment did not decrease cell proliferation in BVECyp24a1-null cells, it strengthened antitumor responses to the BRAFV600E inhibitor PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our findings offer direct evidence that Cyp24a1 functions as an oncogene in PTC, where its overexpression activates multiple signaling cascades to promote malignant progression and resistance to PLX4720 treatment. Cancer Res; 77(8); 2161-72. ©2017 AACR.
Collapse
Affiliation(s)
- Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Essa Y Baitei
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Huda A BinEssa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ranjit S Parhar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - René St-Arnaud
- Department of Surgery and Human Genetics, McGill University, Montreal, Quebec, Canada; and Research Centre, Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Catrin Pritchard
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester, UK
| | - Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Loyer C, Leroy C, Molin A, Odou MF, Huglo D, Lion G, Ernst O, Hoffmann M, Porchet N, Carnaille B, Pattou F, Kottler ML, Vantyghem MC. Hyperparathyroidism complicating CYP 24A1 mutations. ANNALES D'ENDOCRINOLOGIE 2016; 77:615-619. [DOI: 10.1016/j.ando.2016.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
|
9
|
Ahn HY, Chung YJ, Park KY, Cho BY. Serum 25-Hydroxyvitamin D Level Does Not Affect the Aggressiveness and Prognosis of Papillary Thyroid Cancer. Thyroid 2016; 26:429-33. [PMID: 26739552 DOI: 10.1089/thy.2015.0516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Vitamin D deficiency has been known to be associated with the aggressiveness and prognosis of several cancers. This study evaluated the effect of preoperative serum vitamin D levels on the aggressiveness and prognosis of papillary thyroid cancer (PTC). METHODS In total, 820 patients with PTC were enrolled. 25-hydroxyvitamin D levels were measured in blood samples before surgery. Clinical, pathologic, and recurrence data were accessed to examine the prognostic effects of vitamin D. Patients were categorized into four quartiles by preoperative serum vitamin D levels. RESULTS Of the enrolled patients, 795 (97%) had insufficient vitamin D levels (<30 ng/mL). Vitamin D levels showed positive correlations with age and body mass index (BMI), and negative correlations with serum thyrotropin levels and antithyroid peroxidase antibody titers. The association between vitamin D quartile and the risks of extrathyroidal invasion, lymph node metastasis, advanced cancer stages (III or IV), and risk of recurrence were not significant after adjusting for age, sex, BMI, preoperative ionized calcium, and parathyroid hormone. Additionally, serum vitamin D was not associated with recurrent or persistent PTC. CONCLUSION Serum vitamin D levels are not associated with either disease aggressiveness or poor outcomes among patients with PTC and vitamin D insufficiency.
Collapse
Affiliation(s)
- Hwa Young Ahn
- 1 Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine , Seoul, Korea
| | - Yun Jae Chung
- 1 Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine , Seoul, Korea
| | - Kwang-Yeol Park
- 2 Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine , Seoul, Korea
| | - Bo Youn Cho
- 1 Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine , Seoul, Korea
| |
Collapse
|
10
|
Li WF, Wang G, Zhao ZB, Liu CA. High expression of metadherin correlates with malignant pathological features and poor prognostic significance in papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2015; 83:572-80. [PMID: 25418110 DOI: 10.1111/cen.12683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Metadherin (MTDH) protein, also called astrocyte elevated gene-1 (AEG-1) is over expressed in a variety of malignant tumours, and is closely related to tumour invasion and the poor prognosis. OBJECTIVE This study tries to explore the clinical pathological significance of MTDH expression in a large cohort of patients with PTC. DESIGN AND PATIENTS Immunohistochemistry was used to detect MTDH expression in 156 cases of PTC, 6 cases of anaplastic thyroid carcinoma (ATC), 10 cases of multinodular goitre (MNG) and 10 cases of thyroid adenoma tissues who received a thyroid operation between June 2003 and July 2008. MEASUREMENTS Clinical pathological data of 156 cases of PTC were analysed according to MTDH expression. The Kaplan-Meier method was used to plot survival curves and log-rank test to compare the postoperative survival results. The prognostic meaning of MTDH expression in PTC was evaluated by Cox regression analysis. RESULTS The positive expression rates of MTDH in PTC and ATC tissues were 37·2% (58/156) and 50% (3/6), respectively, and MTDH positive expression rates were both 10% (1/10) in MNG and thyroid adenoma tissues. High MTDH expression in PTC was associated with larger tumour size (P = 0·030), high rates of lymph node (P = 0·041) and distant metastasis (P = 0·028), but no relation with the patient age, gender, tumour multicenter, extrathyroid invasion and tumour grade. High MTDH expression was associated with recurrence-free survival (RFS) and disease-specific survival rate (DSS) (P = 0·014, P = 0·001, respectively). Cox regression analysis showed that high MTDH expression was independent prognostic indicators for RFS and DSS in patients with PTC (P = 0·023 and P = 0·035, respectively). CONCLUSION High MTDH expression in PTC might play an important role in tumour growth and metastasis, and targeting MTDH treatment might have potential therapeutic value for patients with PTC.
Collapse
Affiliation(s)
- Wen-Fang Li
- Department of General Surgery, the Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Gen Wang
- Department of General Surgery, Taihe Hospital Affiliated to Hubei Medical University, Shiyan City, China
| | - Zong-Bin Zhao
- Department of General Surgery, Taihe Hospital Affiliated to Hubei Medical University, Shiyan City, China
| | - Chang-An Liu
- Department of General Surgery, the Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Gröschel C, Tennakoon S, Kállay E. Cytochrome P450 Vitamin D Hydroxylases in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY 2015; 74:413-58. [PMID: 26233913 DOI: 10.1016/bs.apha.2015.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin D insufficiency correlates with increased incidence of inflammatory disorders and cancer of the colon, breast, liver, and prostate. Preclinical studies demonstrated that the hormonally active form of vitamin D, 1,25(OH)2D3, has antiproliferative, proapoptotic, anti-inflammatory, and immunomodulatory effects. Tissue levels of 1,25(OH)2D3 are determined by expression and activity of specific vitamin D hydroxylases expressed at renal and extrarenal sites. In order to understand how perturbations in the vitamin D system affect human health, we need to understand the steps involved in the synthesis and catabolism of the active metabolite. This review provides an overview about recent findings on the altered vitamin D metabolism in inflammatory conditions and carcinogenesis. We will summarize existing data on the pathophysiological regulation of vitamin D hydroxylases and outline the role of adequate levels of 1,25(OH)2D3 on tissue homeostasis.
Collapse
Affiliation(s)
- Charlotte Gröschel
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | - Samawansha Tennakoon
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel, Vienna, Austria
| | - Enikö Kállay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel, Vienna, Austria.
| |
Collapse
|
12
|
Clinicopathological features, vitamin D serological levels and prognosis in cutaneous melanoma of shield-sites: an update. Med Oncol 2014; 32:451. [DOI: 10.1007/s12032-014-0451-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 12/27/2022]
|