1
|
Feng Y, Yang X, Wang Y, Chi N, Yu J, Fu X. circRNA mannosidase alpha class 1A member 2 contributes to the proliferation and motility of papillary thyroid cancer cells through upregulating metadherin via absorbing microRNA-449a. Anticancer Drugs 2023; 34:44-56. [PMID: 36066401 DOI: 10.1097/cad.0000000000001340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Papillary thyroid carcinoma (PTC) is a common malignancy in endocrine system globally. Accumulating articles have found that circular RNAs (circRNAs) were dysregulated, and they were involved in PTC development. The aim of this project was to explore the function and associated mechanism of circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in PTC progression. The expression of RNA was determined by real-time quantitative PCR. Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed by wound healing assay and transwell invasion assay, respectively. Protein levels were determined by Western blot assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to confirm the interaction between microRNA-449a (miR-449a) and circMAN1A2 or metadherin (MTDH). Xenograft tumor model was utilized to explore the effect of circMAN1A2 silencing on tumor growth in vivo . CircMAN1A2 expression was elevated in PTC specimens and three PTC cell lines relative to adjacent normal specimens and Nthy-ori 3-1 cell line. CircMAN1A2 silencing inhibited the proliferation and motility of PTC cells. CircMAN1A2 acted as a molecular sponge of miR-449a, and circMAN1A2 knockdown suppressed PTC development partly through upregulating miR-449a. MiR-449a bound to the 3' untranslated region of MTDH, and miR-449a restrained PTC progression partly through down-regulating MTDH. CircMAN1A2 interference suppressed PTC progression in vivo . CircMAN1A2 contributed to the proliferation ability and motility of PTC cells through enhancing MTDH expression via sponging miR-449a.
Collapse
Affiliation(s)
- Yao Feng
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Xinxin Yang
- School of Clinical Medicine, Jiamusi University and Departments of
| | | | - Nannan Chi
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Jianan Yu
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Xiandong Fu
- General Surgery, Jiamusi University, Jiamusi, China
| |
Collapse
|
2
|
Deng J, Zhang Q, Lu L, Fan C. Long Noncoding RNA DLGAP1-AS1 Promotes the Aggressive Behavior of Gastric Cancer by Acting as a ceRNA for microRNA-628-5p and Raising Astrocyte Elevated Gene 1 Expression. Cancer Manag Res 2020; 12:2947-2960. [PMID: 32431541 PMCID: PMC7197941 DOI: 10.2147/cmar.s246166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The long noncoding RNA DLGAP1 antisense RNA 1 (DLGAP1-AS1) plays well-defined roles in the malignant progression of hepatocellular carcinoma. The purpose of this study was to determine whether DLGAP1-AS1 affects the aggressive behavior of gastric cancer (GC). Methods DLGAP1-AS1 expression in GC tissue samples and cell lines was determined by reverse-transcription quantitative PCR. GC cell proliferation, apoptosis, migration, invasion, and tumor growth in vitro as well as in vivo were examined by the Cell Counting Kit-8 assay, flow-cytometric analysis, transwell migration and invasion assays, and xenograft model experiments, respectively. Results DLGAP1-AS1 was overexpressed in GC tissue samples and cell lines. Among patients with GC, the increased level of DLGAP1-AS1 correlated with tumor size, TNM stage, lymph node metastasis, distant metastasis, and shorter overall survival. The knockdown of DLGAP1-AS1 suppressed GC cell proliferation, migration, and invasion in vitro, as well as promoted cell apoptosis and hindered tumor growth in vivo. Mechanistically, DLGAP1-AS1 functioned as a competing endogenous RNA for microRNA-628-5p (miR-628-5p) in GC cells, thereby increasing the expression of the miR-628-5p target astrocyte elevated gene 1 (AEG-1). Functionally, the recovery of the miR-628-5p/AEG-1 axis output attenuated the effects of DLGAP1-AS1 knockdown in GC cells. Conclusion DLGAP1-AS1 is a pleiotropic oncogenic lncRNA in GC. DLGAP1-AS1 plays a pivotal part in the oncogenicity of GC in vitro and in vivo by regulating the miR-628-5p/AEG-1 axis. DLGAP1-AS1, miR-628-5p, and AEG-1 form a regulatory pathway to facilitate GC progression, suggesting this pathway as an effective target for the treatment of GC.
Collapse
Affiliation(s)
- Jiying Deng
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Qin Zhang
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Lianwei Lu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong 261000, People's Republic of China
| | - Chunxia Fan
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| |
Collapse
|
3
|
Song Z, Yang H, Wu X, Kong C, Xu C. microRNA-564 inhibits the aggressive phenotypes of papillary thyroid cancer by directly targeting astrocyte-elevated gene-1. Onco Targets Ther 2019; 12:4869-4881. [PMID: 31388302 PMCID: PMC6607985 DOI: 10.2147/ott.s201282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 01/19/2023] Open
Abstract
Background: Accumulating evidence has revealed that an increasing number of microRNAs (miRNAs) are dysregulated in papillary thyroid cancer (PTC) and that their dysregulation plays an important role in PTC onset and progression. Reportedly, miRNA-564 (miR-564) is downregulated in several types of human cancer. However, its expression profile and specific functions in PTC remain unclear to date. Methods: In this study, we used reverse transcription-quantitative polymerase chain reaction to detect miR-564 expression in PTC tissues and cell lines. Further, the regulatory roles of miR-564 in the malignant development of PTC in vitro and in vivo were examined using a series of functional experiments. In addition, the possible underlying mechanisms and signaling pathways involved were investigated. Results: We demonstrated that miR-564 expression markedly decreased in PTC tissues and cell lines, and this decrease correlated with the lymph node metastasis and tumor-node-metastasis stage. miR-564 upregulation significantly inhibited cell proliferation, migration, and invasion and induced cell apoptosis in vitro as well as hindered tumor growth in vivo. Furthermore, astrocyte-elevated gene-1 (AEG-1) was identified as a direct target gene of miR-564 in PTC cells. Its expression was upregulated and inversely correlated with miR-564 expression in clinically PTC tissues. Additionally, the silencing of AEG-1 expression could imitate the action of miR-564 overexpression in PTC cells. Remarkably, the restoration of AEG-1 expression partially abolished the tumor-suppressing effects induced by a miR-564 upregulation in PTC cells. Ectopic miR-564 expression deactivated the PTEN/Akt pathway in PTC cells in vitro and in vivo. Conclusion: Overall, the findings of the current study suggest that miR-564 is a tumor-suppressive miRNA that exerts crucial roles in the development and progression of PTC. Therefore, this miRNA might be a promising candidate target in the anticancer treatment of patients with PTC.
Collapse
Affiliation(s)
- Zhenzhen Song
- Department of Laboratory, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Huimei Yang
- Department of Laboratory, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Xia Wu
- Department of Oncology, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Cui Kong
- Department of Oncology, The Third People’s Hospital of Linyi, Linyi, Shandong276023, People’s Republic of China
| | - Cong’e Xu
- Department of Radiation Oncology, Linyi Cancer Hospital, Linyi, Shandong276000, People’s Republic of China
| |
Collapse
|
4
|
Wang L, Lyu X, Ma Y, Wu F, Wang L. MicroRNA‑504 targets AEG‑1 and inhibits cell proliferation and invasion in retinoblastoma. Mol Med Rep 2019; 19:2935-2942. [PMID: 30720088 DOI: 10.3892/mmr.2019.9923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs/miRs) has become increasingly recognized as a primary feature of retinoblastoma (RB). Furthermore, miRNAs have been demonstrated to be involved in the occurrence and development of RB. Therefore, it is crucial to investigate the expression profile and roles of miRNAs in RB in order to identify potential therapeutic targets to treat patients with RB. The expression profile and biological roles of miRNA‑504 (miR‑504) have been reported in numerous types of human cancer; however, the roles of miR‑504 in RB remain unknown. In the present study, it was demonstrated that miR‑504 expression was significantly decreased in RB tissues and cell lines. Functional analysis identified that resumption of miR‑504 expression suppressed cell proliferation and invasion in RB. Furthermore, astrocyte elevated gene‑1 (AEG‑1) was determined to be a direct target of miR‑504 in RB, and a negative correlation between miR‑504 and AEG‑1 mRNA expression levels was observed in RB tissues. Additionally, the tumor‑suppressing effects of miR‑504 overexpression in RB cells could be rescued by AEG‑1 upregulation. In conclusion, these results indicated a significant role of the miR‑504/AEG‑1 pathway in inhibiting the aggressiveness of RB, suggesting that this miRNA may be employed as a therapeutic target for the treatment of patients with this disease.
Collapse
Affiliation(s)
- Lina Wang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueman Lyu
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yunqing Ma
- Department of Intensive Care Unit, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Fei Wu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ling Wang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
5
|
Zhang Y, Zhao F. MicroRNA‑758 inhibits tumorous behavior in tongue squamous cell carcinoma by directly targeting metadherin. Mol Med Rep 2019; 19:1883-1890. [PMID: 30628702 DOI: 10.3892/mmr.2019.9805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/30/2018] [Indexed: 11/05/2022] Open
Abstract
Numerous microRNAs (miRNAs) are dysregulated in tongue squamous cell carcinoma (TSCC), and their dysregulation has been demonstrated to have a strong correlation with TSCC progression via regulation of their targets. Therefore, miRNAs have potential use in the diagnosis and treatment of patients with TSCC. In the present study, miRNA‑758 (miR‑758) expression in TSCC tissues and cell lines was detected through reverse transcription‑quantitative polymerase chain reaction, and the effects of miR‑758 on TSCC cell proliferation and invasion were investigated by using Cell Counting kit‑8 and Transwell invasion assays. A luciferase reporter assay was performed to determine the target interaction between miR‑758 and metadherin (MTDH) in TSCC cells. The results revealed that miR‑758 was downregulated in TSCC tissues and cell lines. miR‑758 overexpression restricted the proliferation and invasion of TSCC cells. Additionally, MTDH was verified as a direct target gene of miR‑758 in TSCC cells. Furthermore, MTDH was observed to be upregulated in TSCC tissues, and the upregulation of MTDH was inversely correlated with miR‑758 expression. Moreover, restored MTDH expression significantly counteracted the suppressive effects of miR‑758 overexpression on TSCC cells. These results suggested that miR‑758 may prevent TSCC progression and development by directly targeting MTDH, thereby providing evidence that miR‑758 is a novel therapeutic target for the treatment of patients with TSCC.
Collapse
Affiliation(s)
- Yulan Zhang
- Department of Stomatology, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| | - Fuquan Zhao
- Department of Cardiovascular Intervention, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028000, P.R. China
| |
Collapse
|
6
|
Zhang Y, Wang X, Zhao Y. MicroRNA‑874 prohibits the proliferation and invasion of retinoblastoma cells by directly targeting metadherin. Mol Med Rep 2018; 18:3099-3105. [PMID: 30015932 DOI: 10.3892/mmr.2018.9295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/21/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) serve important roles in regulating gene expression by directly binding to the 3'‑untranslated regions of target genes. Multiple miRNAs are dysregulated in retinoblastoma (RB) and their dysregulation is closely related to RB malignancy. Therefore, exploring the detailed roles of miRNAs in RB is valuable to facilitate the development of effective therapeutic targets for patients with this disease. miRNA‑874‑3p (miR‑874) has been recently reported to be downregulated in several types of human cancer and serves an essential role in cancer progression. However, the expression pattern and detailed roles of miR‑874 in RB, as well as the underlying molecular mechanisms in RB, have not been clearly elucidated. Therefore, this study detected miR‑874 expression in RB tissues and cell lines. The biological roles of miR‑874 in RB were determined and the underlying mechanisms of its actions in RB cells were also examined. This study revealed that miR‑874 expression was aberrantly underexpressed in RB tissues and cell lines. However, returning miR‑874 expression restricted the proliferative and invasive abilities of RB cells. In terms of the underlying mechanism, metadherin (MTDH) was validated as a direct target gene of miR‑874 in RB cells. MTDH inhibition could imitate the inhibitory roles of miR‑874 overexpression in RB cells. Furthermore, forced MTDH expression partially reversed the suppressive effects of miR‑874 on RB cells. In conclusion, this study revealed that miR‑874 may inhibit RB progression by directly targeting MTDH. Restoration of miR‑874 expression may be a novel strategy for preventing the rapid growth and metastasis of RB cells.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xueqin Wang
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yuehua Zhao
- Department of Pediatrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
7
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
8
|
Moore RF, Sholl AB, Kidd L, Al-Qurayshi Z, Tsumagari K, Emejulu OM, Kholmatov R, Friedlander P, Abd Elmageed ZY, Kandil E. Metadherin Expression is Associated with Extrathyroidal Extension in Papillary Thyroid Cancer Patients. Ann Surg Oncol 2016; 23:2883-8. [DOI: 10.1245/s10434-016-5245-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 12/13/2022]
|
9
|
He J, Cao Y, Su T, Jiang Y, Jiang L, Zhou W, Zhang C, Wang W, Ning G. Downregulation of miR-375 in aldosterone-producing adenomas promotes tumour cell growth via MTDH. Clin Endocrinol (Oxf) 2015; 83:581-9. [PMID: 25944465 DOI: 10.1111/cen.12814] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/09/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Previous studies have investigated the genetic and molecular basis of primary aldosteronism (PA), a common cause of human hypertension, but the effects of microRNAs (miRNAs) on the adrenocortical cell proliferation and aldosterone production are largely obscure. Here, we characterized miRNA expression patterns in the subtypes of PA to gain a better understanding of its pathogenesis. METHODS miRNA expression was assessed by microarray profiling analysis in aldosterone-producing adenoma (APA), unilateral adrenal hyperplasia (UAH) and normal adrenal cortex tissues. Selected differentially expressed miRNAs were further validated in a validation cohort by qRT-PCR. A gain-of-function approach was used to explore the functional role of the specific miRNA in vitro. RESULTS Of 31 miRNAs including miR-375, miR-7 and miR-29b were found to be significantly differentially expressed among these three groups. miR-375 was the most downregulated one in adrenal cortex tissues from PA patients, and its expression level was inversely correlated with the tumour size in APA. Overexpression of miR-375 in a human adrenocortical cell line (H295R) reduced cell proliferation and suppressed the expression of MTDH (metadherin, also known as astrocyte elevated gene-1). Moreover, MTDH was verified as a direct target of miR-375 through luciferase reporter assays. Knock-down of MTDH in H295R cells attenuated Akt-Ser473 phosphorylation and inhibited cell viability. CONCLUSION Our findings suggest that miR-375 exerts its tumour-suppressive function via targeting MTDH/Akt pathway and implicate a potential therapeutic target in PA.
Collapse
Affiliation(s)
- Juan He
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Su
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Science (SIBS), Chinese Academy of Science (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|