1
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Shi X, Jiang J, Hong R, Xu F, Dai S. Circulating IGFBP-3 and Interleukin 6 as Predictors of Osteoporosis in Postmenopausal Women: A Cross-Sectional Study. Mediators Inflamm 2023; 2023:2613766. [PMID: 37035758 PMCID: PMC10081892 DOI: 10.1155/2023/2613766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/01/2022] [Accepted: 03/18/2023] [Indexed: 04/03/2023] Open
Abstract
Objective. To explore the relationship between circulating IGFBP-3, IL-6, and bone mineral density and the potential diagnostic role of circulating IGFBP-3 and IL-6 in postmenopausal women with osteoporosis. Methods. Eighty-five postmenopausal women at Soochow University’s First Affiliated Hospital, Osteoporosis and Menopause Clinics, were recruited. Forty-five of 85 women were diagnosed with osteoporosis. Circulating IL-6, PTH, 1,25(OH)2D3, osteocalcin (OST), IGF-1, IGFBP-3, and bone mineral density (BMD) of the lumbar spine (LS) and femoral neck (FN) were measured in 40 ordinary and 45 osteoporotic women. A simple regression analysis calculated the correlation between age, BMD, IL-6, and IGFBP-3. Multiple stepwise regression analyses were conducted to determine which variables were independently related to BMD. The potential role of IGFBP-3 and IL-6 in the diagnosis of postmenopausal osteoporosis was predicted using the area under the receiver operating characteristic curve (ROC, AUC). Results. Age, years since menopause, and circulating IL-6, PTH, and IGFBP-3 were significantly higher in the osteoporosis group compared to the normal group. Osteoporotic women had substantially lower BMDs of the LS and FN than normal women. Age-related increases were found for IGFBP-3 and IL-6, whereas age-related decreases were observed for LS/FN BMD. IGFBP-3 and IL-6 were both negatively correlated with LS and FN BMD. Stepwise multiple regression analysis showed that IGFBP-3 and IL-6 were strong predictors of BMD in postmenopausal women. AUC cut-off values (IGFBP-3: 3.65, IL-6: 0.205) were best evaluated for the diagnosis of postmenopausal women with osteoporosis, and the AUC for circulating IGFBP-3 and IL-6 were 0.706 (95% CI 0.594–0.818) and 0.685 (95% CI 0.571–0.798), respectively. Conclusion. In this cross-sectional study of postmenopausal women, IGFBP-3 and IL-6 were negatively related to BMD. Circulating IGFBP-3 and IL-6 might be essential predictors of postmenopausal osteoporosis and can help predict osteoporotic fracture.
Collapse
Affiliation(s)
- Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Jingjing Jiang
- Department of Obstetrics and Gynecology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Second People’s Hospital of Huaian, Huai’an 223001, China
| | - Ru Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- National Regional Center for Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Feng Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- National Regional Center for Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shouqian Dai
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- National Regional Center for Trauma Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Yoshioka M, Kosaki K, Matsui M, Shibata A, Oka K, Kuro-O M, Saito C, Yamagata K, Maeda S. Replacing sedentary time for physical activity on bone density in patients with chronic kidney disease. J Bone Miner Metab 2021; 39:1091-1100. [PMID: 34319455 DOI: 10.1007/s00774-021-01255-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION This study aimed to examine the cross-sectional associations of sedentary time and physical activity time with bone density in patients with chronic kidney disease (CKD). The isotemporal substitution (IS) modeling was used to estimate the beneficial effects of behavioral changes (e.g., replacing sedentary time with physical activity time) on bone density in these patients. MATERIALS AND METHODS A total of 92 patients with CKD (age: 65 ± 9 years; estimated glomerular filtration rate: 57 ± 22 mL/min/1.73 m2) were included in this cross-sectional study. The times spent in sedentary behavior (SB), light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) were assessed using a triaxial accelerometer. Through quantitative ultrasound measurements, the stiffness index, as a measure of bone density, was calculated using the speed of sound and broadband ultrasound attenuation. RESULTS In multivariate analyses, the stiffness index was beneficially associated with the MVPA time (β = 0.748), but was not significantly associated with the SB and LPA times. The IS models showed that replacing 10 min/day of SB with the equivalent LPA time was not significantly associated with the stiffness index; however, replacing 10 min/day of SB with the equivalent MVPA time was beneficially associated with the stiffness index (β = 0.804). CONCLUSION These results suggest that a small increase in MVPA time (e.g., 10 min/day) may attenuate the decline in bone density in patients with CKD. Our findings may provide insight for the development of novel strategies for improving bone health in patients with CKD.
Collapse
Affiliation(s)
- Masaki Yoshioka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kouzimachi, Chiyoda-ku, Tokyo, 102-8472, Japan
| | - Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Masahiro Matsui
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kouzimachi, Chiyoda-ku, Tokyo, 102-8472, Japan
| | - Ai Shibata
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Koichiro Oka
- Faculty of Sport Sciences, Waseda University, 2-579-15, Tokorozawa, Saitama, 359-1192, Japan
| | - Makoto Kuro-O
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Chie Saito
- Department of Nephrology, Factory of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Factory of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- R&D Center for Smart Wellness City Policies, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
- Faculty of Sport Sciences, Waseda University, 2-579-15, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
4
|
Li Z, Tian Y, Zhang L, Zhang T, Wang P, Wang J. Type II collagen from squid cartilage mediated myogenic IGF-I and irisin to activate the Ihh/PThrp and Wnt/β-catenin pathways to promote fracture healing in mice. Food Funct 2021; 12:6502-6512. [PMID: 34080588 DOI: 10.1039/d0fo03069d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fractures are the most common large-organ, traumatic injury in humans. The fracture healing stage includes the inflammatory stage (0-5d), cartilage callus stage (5-14d) and hard callus stage (14-21d). All mice underwent open tibial fracture surgery and were treated with saline, Glu or SCII for 21d. Calluses were harvested 5d, 10d and 21d after fracture. Compared with the model group, SCII significantly decreased TNF-α and increased aggrecan serum levels by 5d. H&E results showed that fibrous calluses were already formed in the SCII group and that chondrocytes had begun to proliferate. By 10d, the chondrocytes in the SCII group became hypertrophic and mineralized, and the serum TGF-β and Col-Iα levels were significantly increased, which indicated that the mice with SCII treatment rapidly passed the cartilage repair period and new bone formation was accelerated. Skeletal muscle repaired bones through muscle paracrine factors. IGF-1 and irisin are the two major secretory cytokines. The results showed that the content of muscle homogenate IGF-1 in the SCII group reached the peak at 10d, followed by the up-regulation of Ihh, Patched, Gli1 and Col10α in the callus through the bone surface receptor IGF-1R. Besides, SCII also significantly elevated the muscle irisin level (10 and 21d), and then increased Wnt10b, LRP5, β-catenin and Runx2 expression in the callus by receptor αVβ5. These results suggest that SCII can accelerate the process of endochondral osteogenesis and promote fracture healing through activating the Ihh/PThrp and Wnt/β-catenin pathways by regulating muscle paracrine factors. To our knowledge, this is the first study to investigate the effect of marine-derived collagen on fracture healing. This study may provide a theoretical basis for the high-value application of the laryngeal cartilage of squid in the future.
Collapse
Affiliation(s)
- Zhuo Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
The present paper reviews published literature on the relationship between dietary protein and bone health. It will include arguments both for and against the anabolic and catabolic effects of dietary protein on bone health. Adequate protein intake provides the amino acids used in building and maintaining bone tissue, as well as stimulating the action of insulin-like growth factor 1, which in turn promotes bone growth and increases calcium absorption. However, the metabolism of dietary sulphur amino acids, mainly from animal protein, can lead to increased physiological acidity, which may be detrimental for bone health in the long term. Similarly, cereal foods contain dietary phytate, which in turn contains phosphate. It is known that phosphate consumption can also lead to increased physiological acidity. Therefore, cereal products may produce as much acid as do animal proteins that contain sulphur amino acids. The overall effect of dietary protein on physiological acidity, and its consequent impact on bone health, is extremely complex and somewhat controversial. The consensus is now moving towards a synthesised approach. Particularly, how anabolic and catabolic mechanisms interact; as well as how the context of the whole diet and the type of protein consumed is important.
Collapse
|
6
|
Huang Y, Chang A, Zhou W, Zhao H, Zhuo X. IGFBP3 as an indicator of lymph node metastasis and unfavorable prognosis for papillary thyroid carcinoma. Clin Exp Med 2020; 20:515-525. [PMID: 32596748 DOI: 10.1007/s10238-020-00642-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/17/2020] [Indexed: 12/01/2022]
Abstract
Lymph node metastasis (LNM) is a usual event in papillary thyroid carcinoma (PTC) patients, which usually leads to poor prognosis. However, the molecular mechanisms of LNM remain unclear. Thus, we aimed to screen the possible key genes in the progression of LNM in PTC patients and further validate their roles. The study involved two phases: a discovery phase and a validation one. In the former phase, the candidate genes were screened by using bioinformatics methods. In the latter one, the genes were firstly assessed in a cohort from the cancer genome atlas (TCGA) to evaluate the associations of their expressions with clinical features and the prognostic values, and then, they were assessed at protein levels by using an immunohistochemical assay. Consequently, IGHBP3 was selected as the candidate gene, which might be enriched in several metabolism-related pathways and cancer progression-related pathways. High expressions of IGHBP3 have an association with gender, advanced clinical stages, high T stages, and the presence of LNM. Survival analysis indicated that IGHBP3 may affect the prognosis of PTC patients. The use of a tissue chip confirmed the view that IGHBP3 might play a crucial role in the LNM of PTC. In conclusion, IGHBP3 might be involved in the development of LNM in PTC patients. IGHBP3 over-expression might be a novel indicator and a potential target for PTC therapy.
Collapse
Affiliation(s)
- Yi Huang
- Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Aoshuang Chang
- Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Wei Zhou
- Chongqing Cancer Institute, Chongqing, China
| | - Houyu Zhao
- Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Xianlu Zhuo
- Affiliated Hospital of Guiyang Medical University, Guiyang, China.
| |
Collapse
|
7
|
Kirby DJ, Buchalter DB, Anil U, Leucht P. DHEA in bone: the role in osteoporosis and fracture healing. Arch Osteoporos 2020; 15:84. [PMID: 32504237 DOI: 10.1007/s11657-020-00755-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 02/03/2023]
Abstract
Dehydroepiandrosterone (DHEA) is a metabolic intermediate in the biosynthesis of estrogens and androgens with a past clouded in controversy and bold claims. It was once touted as a wonder drug, a fountain of youth that could cure all ailments. However, in the 1980s DHEA was banned by the FDA given a lack of documented health benefits and long-term use data. DHEA had a revival in 1994 when it was released for open market sale as a nutritional supplement under the Dietary Supplement Health and Safety Act. Since that time, there has been encouraging research on the hormone, including randomized controlled trials and subsequent meta-analyses on various conditions that DHEA may benefit. Bone health has been of particular interest, as many of the metabolites of DHEA are known to be involved in bone homeostasis, specifically estrogen and testosterone. Studies demonstrate a significant association between DHEA and increased bone mineral density, likely due to DHEA's ability to increase osteoblast activity and insulin like growth factor 1 (IGF-1) expression. Interestingly, IGF-1 is also known to improve fracture healing, though DHEA, a potent stimulator of IGF-1, has never been tested in this scenario. The aim of this review is to discuss the history and mechanisms of DHEA as they relate to the skeletal system, and to evaluate if DHEA has any role in treating fractures.
Collapse
Affiliation(s)
- David J Kirby
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA.
| | - Daniel B Buchalter
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA
| | - Utkarsh Anil
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, 301 E 17th St, New York, NY, 10003, USA
| |
Collapse
|
8
|
Steinman J, Shibli-Rahhal A. Anorexia Nervosa and Osteoporosis: Pathophysiology and Treatment. J Bone Metab 2019; 26:133-143. [PMID: 31555610 PMCID: PMC6746661 DOI: 10.11005/jbm.2019.26.3.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/06/2019] [Accepted: 07/21/2019] [Indexed: 01/18/2023] Open
Abstract
Anorexia nervosa (AN) affects 2.9 million people, many of whom experience bone loss and increased fracture risk. In this article, we review data on the underlying pathophysiology of AN-related osteoporosis and possible approaches to disease management. Available research suggests that low body weight and decreased gonadal function are the strongest predictors of bone loss and fractures in patients with AN. Additionally, other metabolic disturbances have been linked to bone loss, including growth hormone resistance, low leptin concentrations, and hypercortisolemia, but those correlations are less consistent and lack evidence of causality. In terms of treatment of AN-related bone disease, weight gain has the most robust impact on bone mineral density (BMD). Restoration of gonadal function seems to augment this effect and may independently improve BMD. Bisphosphonates, insulin-like growth factor 1 supplementation, and teriparatide may also be reasonable considerations, however need long-term efficacy and safety data.
Collapse
Affiliation(s)
- Jeremy Steinman
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Amal Shibli-Rahhal
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|