1
|
Anitua E, Muruzabal F, Recalde S, Fernandez-Robredo P, Alkhraisat MH. Potential Use of Plasma Rich in Growth Factors in Age-Related Macular Degeneration: Evidence from a Mouse Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2036. [PMID: 39768916 PMCID: PMC11727663 DOI: 10.3390/medicina60122036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives: Age-related macular degeneration (AMD) is the leading cause of low vision and legal blindness in adults in developed countries. Wet AMD can be successfully treated using vascular endothelial growth factor (VEGF) inhibitors; however, dry AMD currently has no effective treatment. The purpose of this study is to analyze the efficacy of intraocular injection of plasma rich in growth factors (PRGF) in an AMD mouse model induced by intraperitoneal administration of sodium iodate. Materials and Methods: Intravitreal application of PRGF (experimental group) and saline (control group) was performed immediately after intraperitoneal injection of sodium iodate. Retinographies were performed at 2 and 7 days after treatment administration. The eyes were retrieved for histological and immunohistological analysis. Statistical analysis was performed to compare the outcomes between the study groups. Results: In comparison to saline solution, PRGF significantly decreased the depigmentation of the RPE, showing a more reddened retina. PRGF intravitreal treatment significantly reduced the glial fibrillary acidic protein (GFAP) stained processes, suggesting a significant reduction in the risk of scar formation. Moreover, the myofibroblast invasion into the RPE cell layer was significantly reduced in the PRGF-treated group of mice. There was a tendency for better preservation of the photoreceptors in the PRGF group. Conclusions: Within the limitations of this study, intravitreal injection of PRGF provided significant protection against the degeneration of the photoreceptors and the RPE induced by the systemic administration of NaIO3.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Francisco Muruzabal
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (S.R.); (P.F.-R.)
- Navarra Institute for Health Research, IdiSNA, 31008 Pamplona, Spain
| | - Mohammad Hamdan Alkhraisat
- BTI Biotechnology Institute, 01005 Vitoria, Spain; (F.M.); (M.H.A.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Department of Oral and Maxillofacial Surgery, Oral Medicine and Periodontology Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Anitua E, Muruzabal F, de la Fuente M, Del Olmo-Aguado S, Alkhraisat MH, Merayo-Lloves J. PRGF Membrane with Tailored Optical Properties Preserves the Cytoprotective Effect of Plasma Rich in Growth Factors: In Vitro Model of Retinal Pigment Epithelial Cells. Int J Mol Sci 2023; 24:11195. [PMID: 37446374 DOI: 10.3390/ijms241311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The present study evaluates the ability of a novel plasma rich in growth factors (PRGF) membrane with improved optical properties to reduce oxidative stress in retinal pigment epithelial cells (ARPE-19 cells) exposed to blue light. PRGF was obtained from three healthy donors and divided into four main groups: (i) PRGF membrane (M-PRGF), (ii) PRGF supernatant (S-PRGF), (iii) platelet-poor plasma (PPP) membrane diluted 50% with S-PRGF (M-PPP 50%), and (iv) M-PPP 50% supernatant (S-PPP 50%). ARPE-19 cells were exposed to blue light and then incubated with the different PRGF-derived formulations or control for 24 and 48 h under blue light exposure. Mitochondrial and cell viability, reactive oxygen species (ROS) production, and heme oxygenase-1 (HO-1) and ZO-1 expression were evaluated. Mitochondrial viability and cell survival were significantly increased after treatment with the different PRGF-derived formulations. ROS synthesis and HO-1 expression were significantly reduced after cell treatment with any of the PRGF-derived formulations. Furthermore, the different PRGF-derived formulations significantly increased ZO-1 expression in ARPE-19 exposed to blue light. The new PRGF membrane with improved optical properties and its supernatant (M-PPP 50% and S-PPP 50%) protected and reversed blue light-induced oxidative stress in ARPE-19 cells at levels like those of a natural PRGF membrane and its supernatant.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Francisco Muruzabal
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - María de la Fuente
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Susana Del Olmo-Aguado
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Mohammad H Alkhraisat
- BTI-Biotechnology Institute, 01007 Vitoria, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Jesús Merayo-Lloves
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega, 33012 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
4
|
Sharma A, Wu L, Bloom S, Stanga P, Figueroa MS, Govetto A, Mirajkar A, Nagpal M, Mehrotra N, Sharma A, Rezaei KA. RWC Update: Intraoperative Fluorescein Angiography, Plasma Rich in Growth Factor as Adjuvant to Vitrectomy in High Myopic Retinal Detachment Associated With Full-Thickness Macular Hole, Giant Tear of the Retinal Pigment Epithelium. Ophthalmic Surg Lasers Imaging Retina 2023; 54:259-264. [PMID: 37184990 DOI: 10.3928/23258160-20230412-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
5
|
García-Millan C, Pino A, Rodrigues R, Segurado-Miravalles G, Alegre-Sánchez A, Jaén P, Anitua E. An Autologous Topical Serum Derived from Platelet-Rich Plasma Therapy for the Management of Sensitive Skin Alterations: A Case Series Report. Clin Cosmet Investig Dermatol 2022; 15:2077-2086. [PMID: 36199385 PMCID: PMC9528915 DOI: 10.2147/ccid.s379323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
Background Although the underlying pathophysiology of sensitive skin remains unknown, it presents clinical symptoms like erythema, burning and dryness associated with other inflammatory dermatoses such as dermatitis or rosacea. Objective The aim of the present report was to provide preliminary data about the efficacy of Endoret-Serum (ES) as an autologous therapy for the topical management of sensitive skin alterations. Materials and Methods Five patients underwent a daily topical ES treatment that was maintained for three months. Clinical assessment was carried out using validated dermatological surveys (DLQI, IGA, Likert, PGI-I). Additionally, skin hydration measurement and high-resolution topographic and reflectance confocal imaging analysis were carried out. Results No adverse events were observed during the treatment. At the end of the follow-up period, surveys highlighted a significant therapeutic effect compared to baseline. Skin hydration was also improved, and topographic images showed a decrease in patient’s underlying inflammatory and vascular condition. Conclusion This preliminary report suggests that Endoret-Serum may be useful in the management of clinical symptoms derived from sensitive skin alterations.
Collapse
Affiliation(s)
| | - Ander Pino
- BTI Biotechnology Institute, Vitoria, Spain
| | | | | | | | - Pedro Jaén
- Grupo de Dermatología Pedro Jaén, Madrid, Spain
- University Hospital Ramon y Cajal, Madrid, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute, Vitoria, Spain
- Correspondence: Eduardo Anitua, BTI Biotechnology Institute, Jacinto Quincoces 39, Vitoria, Spain, Email
| |
Collapse
|
6
|
Anitua E, Muruzabal F, Pino A, Prado R, Azkargorta M, Elortza F, Merayo-Lloves J. Proteomic Characterization of Plasma Rich in Growth Factors and Undiluted Autologous Serum. Int J Mol Sci 2021; 22:ijms222212176. [PMID: 34830053 PMCID: PMC8618701 DOI: 10.3390/ijms222212176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last three decades, there has been special interest in developing drugs that mimic the characteristics of natural tears for use it in the treatment of several ocular surface disorders. Interestingly, the composition of blood plasma is very similar to tears. Therefore, different blood-derived products like autologous serum (AS) and plasma rich in growth factors (PRGF) have been developed for the treatment of diverse ocular pathologies. However, scarce studies have been carried out to analyze the differences between both types of blood-derived products. In the present study, blood from three healthy donors was drawn and processed to obtain AS and PRGF eye drops. Then, human corneal stromal keratocytes (HK) were treated with PRGF or undiluted AS. Proteomic analysis was carried out to analyze and characterize the differential protein profiles between PRGF and AS, and the differentially expressed proteins in HK cells after PRGF and AS treatment. The results obtained in the present study show that undiluted AS induces the activation of different pathways related to an inflammatory, angiogenic, oxidative stress and scarring response in HK cells regarding PRGF. These results suggest that PRGF could be a better alternative than AS for the treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI—Biotechnology Institute, 01007 Vitoria, Spain; (F.M.); (A.P.); (R.P.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
- Correspondence:
| | - Francisco Muruzabal
- BTI—Biotechnology Institute, 01007 Vitoria, Spain; (F.M.); (A.P.); (R.P.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Ander Pino
- BTI—Biotechnology Institute, 01007 Vitoria, Spain; (F.M.); (A.P.); (R.P.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Roberto Prado
- BTI—Biotechnology Institute, 01007 Vitoria, Spain; (F.M.); (A.P.); (R.P.)
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
| | - Jesús Merayo-Lloves
- Instituto Oftalmológico Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, 33012 Oviedo, Spain;
| |
Collapse
|
7
|
Anitua E, de la Sen-Corcuera B, Orive G, Sánchez-Ávila RM, Heredia P, Muruzabal F, Merayo-Lloves J. Progress in the use of plasma rich in growth factors in ophthalmology: from ocular surface to ocular fundus. Expert Opin Biol Ther 2021; 22:31-45. [PMID: 34275392 DOI: 10.1080/14712598.2021.1945030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The use of blood derivatives and especially Plasma rich in growth factors (PRGF), for regenerative purposes has been a common trend along the last decades in the field of oral surgery, dermatology, orthopedics, and more recently in ophthalmology.Areas covered: PRGF is a type of platelet-rich plasma that is being explored for the treatment of ocular injuries. The present review article highlights 50 ophthalmology-related publications about the application of PRGF in the treatment of acute and chronic pathologies in ophthalmology as well as most relevant challenges and future prospects.Expert opinion: PRGF technology provides a wide range of formulations that can be used therapeutically in many different acute and chronic ocular pathologies. In addition to eye drops enriched with autologous growth factors, PRGF enables the preparation of both immunologically safe and fibrin-based formulations. Recent advances in the field have promoted PRGF storage for 12 months under freezing conditions, its daily use for 7 days at room temperature and the freeze-dried formulation. The thermally treated immunosafe formulation has shown promising clinical results for the treatment of several diseases such as Sjögren syndrome, graft versus host disease or cicatrizing conjunctivitis. In addition, several fibrin formulations have been preclinically evaluated and clinically incorporated as an adjuvant to ocular surface or glaucoma surgeries, dermal fat graft procedures, limbal stem cell expansion and retinal surgeries. The present review explores the latest scientific and clinical data, current challenges, and main prospects of this technology for the treatment of several ocular injuries.
Collapse
Affiliation(s)
- E Anitua
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - B de la Sen-Corcuera
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - G Orive
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain.,NanoBioCel Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Oviedo, Vitoria-Gasteiz, Spain
| | - R M Sánchez-Ávila
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain
| | - P Heredia
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - F Muruzabal
- Regenerative medicine, Biotechnology Institute (BTI), Vitoria, Spain.,Regenerative medicine, University Institute for Regenerative Medicine and Oral Implantology (UIRMI), Vitoria, Spain
| | - J Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Spain
| |
Collapse
|
8
|
Plasma Rich in Growth Factors Promotes Autophagy in ARPE19 Cells in Response to Oxidative Stress Induced by Blue Light. Biomolecules 2021; 11:biom11070954. [PMID: 34203504 PMCID: PMC8301887 DOI: 10.3390/biom11070954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) causes the degeneration of photoreceptors and retinal cells leading to vision loss in older subjects. Among possible exogenous risk factors, it has been recently proposed that long-term exposure to blue light could aggravate the course of AMD. In the search for therapeutic options, plasma rich in growth factors (PRGF) has been shown to enhance cell antioxidant pathways and protect photoreceptors against the harm produced by blue light, although its mechanism of action remains unknown. One possible mechanism, autophagy, is one of the most conservative cell renewal systems used in eukaryotes to destroy cellular components that have been damaged by some kind of insult. The oxidative stress of exposure to blue light is known to induce cell autophagy. In this study, we examined the combined effects on autophagy of blue light and PRGF in a retinal cell line, ARPE19. In response to treatment with both PRGF and blue light, we detected the modulated expression of autophagy markers such as NF-kB, p62/sqstm1, Atg5, LC3 and Beclin1, and inflammatory markers such as IL1B and IL18. Our findings suggest that PRGF promotes cell autophagy in response to exposure to blue light.
Collapse
|
9
|
Anitua E, Pino A, Aspe L, Martínez M, García A, Goñi F, Troya M. Anti-inflammatory effect of different PRGF formulations on cutaneous surface. J Tissue Viability 2021; 30:183-189. [PMID: 33712331 DOI: 10.1016/j.jtv.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Cutaneous autoimmune and inflammatory diseases are a major burden of global disease and many lack effective treatments that can derive in different dermatoses like atopic dermatitis. Despite the increase prevalence and the high health-care costs worldwide, the heterogeniety and multifactoriality of these diseases mean that effective treatment options are scarce. Plasma rich in growth factors (PRGF) technology could be an alternative approach that may help in the management of this cutaneous condition. The aim of this study was to assess the effect of two different PRGF formulations (just activated and autologous topical serum (ATS)) for the management of skin inflammation. Additionally, ATS was assessed over two patients suffering from radiotherapy induced dermatitis. Human organotypic skin explant cultures (hOSECs) were used as human skin models. To induce atopic dermatitis-like conditions, skin explants were treated with both interleukin-4 (IL-4) and interleukin-13 (IL-13). PRGF and ATS were intradermally and topically applied, respectively. Metabolic activity, reactive oxigen species (ROS), necrosis and inflammatory cytokine production were determined. Both PRGF formulations increased tissue viability and significantly reduced the excessive free radical accumulation and the cutaneous cytokine production such as TNF-α and IL-1β. Case reports showed a positive response after ATS treatment in terms of skin quality improvement, local erythema decrease and burning and itching amelioration. The oedema, swelling and desquamation caused by radiation induced dermatitis was also reduced and the patients referred ceased pruritus and pain. This preliminary study suggests that PRGF might aid in the management of inflammatory skin conditions.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Ander Pino
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Libe Aspe
- University Hospital of Araba (HUA), Vitoria, Spain
| | | | - Adrian García
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - Felipe Goñi
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
10
|
Plasma Rich in Growth Factors Enhances Cell Survival after in Situ Retinal Degeneration. Int J Mol Sci 2020; 21:ijms21207442. [PMID: 33050198 PMCID: PMC7590176 DOI: 10.3390/ijms21207442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of plasma rich in growth factors (PRGFs) under blue light conditions in an in vivo model of retinal degeneration. METHODS Male Wistar rats were exposed to dark/blue light conditions for 9 days. On day 7, right eyes were injected with saline and left eyes with PRGF. Electroretinography (ERG) and intraocular pressure (IoP) measurements were performed before and after the experiment. After sacrifice, retinal samples were collected. Hematoxylin and eosin staining was performed to analyze the structure of retinal sections. Immunofluorescence for brain-specific homeobox/POU domain protein 3A (Brn3a), choline acetyltransferase (ChAT), rhodopsin, heme oxygenase-1 (HO-1), and glial fibrillary acidic protein (GFAP) was performed to study the retinal conditions. RESULTS Retinal signaling measured by ERG was reduced by blue light and recovered with PRGF; however, IoP measurements did not show significant differences among treatments. Blue light reduced the expression for Brn3a, ChAT, and rhodopsin. Treatment with PRGF showed a recovery in their expressions. HO-1 and GFAP results showed that blue light increased their expression but the use of PRGF reduced the effect of light. CONCLUSIONS Blue light causes retinal degeneration. PRGF mitigated the injury, restoring the functionality of these cells and maintaining the tissue integrity.
Collapse
|