1
|
Matthew J, Uus A, De Souza L, Wright R, Fukami-Gartner A, Priego G, Saija C, Deprez M, Collado AE, Hutter J, Story L, Malamateniou C, Rhode K, Hajnal J, Rutherford MA. Craniofacial phenotyping with fetal MRI: a feasibility study of 3D visualisation, segmentation, surface-rendered and physical models. BMC Med Imaging 2024; 24:52. [PMID: 38429666 PMCID: PMC10905839 DOI: 10.1186/s12880-024-01230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
This study explores the potential of 3D Slice-to-Volume Registration (SVR) motion-corrected fetal MRI for craniofacial assessment, traditionally used only for fetal brain analysis. In addition, we present the first description of an automated pipeline based on 3D Attention UNet trained for 3D fetal MRI craniofacial segmentation, followed by surface refinement. Results of 3D printing of selected models are also presented.Qualitative analysis of multiplanar volumes, based on the SVR output and surface segmentations outputs, were assessed with computer and printed models, using standardised protocols that we developed for evaluating image quality and visibility of diagnostic craniofacial features. A test set of 25, postnatally confirmed, Trisomy 21 fetal cases (24-36 weeks gestational age), revealed that 3D reconstructed T2 SVR images provided 66-100% visibility of relevant craniofacial and head structures in the SVR output, and 20-100% and 60-90% anatomical visibility was seen for the baseline and refined 3D computer surface model outputs respectively. Furthermore, 12 of 25 cases, 48%, of refined surface models demonstrated good or excellent overall quality with a further 9 cases, 36%, demonstrating moderate quality to include facial, scalp and external ears. Additional 3D printing of 12 physical real-size models (20-36 weeks gestational age) revealed good/excellent overall quality in all cases and distinguishable features between healthy control cases and cases with confirmed anomalies, with only minor manual adjustments required before 3D printing.Despite varying image quality and data heterogeneity, 3D T2w SVR reconstructions and models provided sufficient resolution for the subjective characterisation of subtle craniofacial features. We also contributed a publicly accessible online 3D T2w MRI atlas of the fetal head, validated for accurate representation of normal fetal anatomy.Future research will focus on quantitative analysis, optimizing the pipeline, and exploring diagnostic, counselling, and educational applications in fetal craniofacial assessment.
Collapse
Affiliation(s)
- Jacqueline Matthew
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Alena Uus
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Leah De Souza
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Robert Wright
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Abi Fukami-Gartner
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Gema Priego
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Barking, Havering and Redbridge University Hospitals NHS Trust, London, UK
| | - Carlo Saija
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maria Deprez
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Alexia Egloff Collado
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jana Hutter
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Lisa Story
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Kawal Rhode
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Jo Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Mary A Rutherford
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Kunieda K, Makihara K, Yamada S, Yamaguchi M, Nakamura T, Terada Y. Brain Structures in a Human Embryo Imaged with MR Microscopy. Magn Reson Med Sci 2024:mp.2023-0110. [PMID: 38369336 DOI: 10.2463/mrms.mp.2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
PURPOSE To delineate brain microstructures in human embryos during the formation of the various major primordia by MR microscopy, with different contrasts appropriate for each target. METHODS We focused mainly on the internal structures in the cerebral cortex and the accessory nerves of the brain. To find appropriate sequence parameters, we measured nuclear magnetic resonance (NMR) parameters and created kernel density plots of T1 and T2 values. We performed T1-weighted gradient echo imaging with parameters similar to those used in the previous studies. We performed T2*-weighted gradient echo imaging to delineate the target structures with the appropriate sequence parameters according to the NMR parameter and flip angle measurements. We also performed high-resolution imaging with both T1- and T2*-weighted sequences. RESULTS T1, T2, and T2* values of the target tissues were positively correlated and shorter than those of the surrounding tissues. In T1-weighted images with a voxel size of (30 µm)3 and (20 µm)3, various organs and tissues and the agarose gel were differentiated as in previous studies, and the structure of approximately 40 µm in size was depicted, but the detailed structures within the cerebral cortex and the accessory nerves were not delineated. In T2*-weighted images with a voxel size of (30 µm)3, the layered structure within the cerebral cortex and the accessory nerves were clearly visualized. Overall, T1-weighted images provided more information than T2*-weighted images, but important internal brain structures of interest were visible only in T2*-weighted images. Therefore, it is essential to perform MR microscopy with different contrasts. CONCLUSION We have visualized brain structures in a human embryo that had not previously been delineated by MR microscopy. We discussed pulse sequences appropriate for the structures of interest. This methodology would provide a way to visualize crucial embryological information about the anatomical structure of human embryos.
Collapse
Affiliation(s)
- Kazuki Kunieda
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyuki Makihara
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masayuki Yamaguchi
- Department of Diagnostic Radiology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Takashi Nakamura
- Molecular Characterization Unit, Center for Sustainable Resource Research, RIKEN, Wako, Saitama, Japan
| | - Yasuhiko Terada
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Dawood Y, Buijtendijk MFJ, Bohly D, Gunst QD, Docter D, Pajkrt E, Oostra RJ, Hennekam RC, van den Hoff MJB, de Bakker BS. Human embryonic and fetal biobanking: Establishing the Dutch Fetal Biobank and a framework for standardization. Dev Cell 2023; 58:2826-2835. [PMID: 38113849 DOI: 10.1016/j.devcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Recent studies of human embryos and fetuses have advanced our understanding not only of basic biology but also of health and disease, through a combination of detailed three-dimensional (3D) morphology and processes such as gene expression, cellular decision-making and differentiation, and epigenetics during the various phases of human development and growth. Large-scale research initiatives focusing on these topics have been initiated during the last decade, all of which depend on biobanks that provide high-quality images of human embryonic and fetal morphology, as well as on high-quality collections of tissue samples that are obtained and stored appropriately. In this perspective, we describe our experience in establishing the Dutch Fetal Biobank to present the framework and workflow of the biobank, provide a brief discussion of the main legal and ethical aspects involved in establishing a pre-natal tissue bank, and present the preliminary data on the first 329 donated specimens.
Collapse
Affiliation(s)
- Yousif Dawood
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Marieke F J Buijtendijk
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Doriane Bohly
- University Côte d'Azur, MSc Biobanks and Complex Data Management, FHU OncoAge, Nice, France; University Hospital of Nice, Pasteur Hospital, Biobank BB-0033-00025, FHU OncoAge, Nice, France
| | - Quinn D Gunst
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Daniel Docter
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Eva Pajkrt
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Roelof-Jan Oostra
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Raoul C Hennekam
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Paediatrics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maurice J B van den Hoff
- Amsterdam UMC Location University of Amsterdam, Department of Medical Biology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| | - Bernadette S de Bakker
- Amsterdam UMC Location University of Amsterdam, Department of Obstetrics and Gynaecology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands; Erasmus MC - Sophia Children's Hospital, University Medical Centre Rotterdam, Department of Paediatric Surgery, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Makihara K, Kunieda K, Yamada S, Yamaguchi M, Nakamura T, Terada Y. High-resolution MRI for human embryos with isotropic 10 μm resolution at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107545. [PMID: 37683315 DOI: 10.1016/j.jmr.2023.107545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Magnetic resonance (MR) microscopy of human embryos has contributed significantly to the development of human embryology. Higher-resolution MR microscopy will have obvious benefits, for example, in visualizing small structures that are blurred or lost in lower-resolution images, providing detailed information on the development and growth of various organs, and improving the accuracy of MR volumetry. However, high-resolution MR microscopy has yet to be realized because of many technical challenges. In this study, therefore, we have performed high-resolution MR microscopy for human embryos with isotropic resolutions of (12 μm)3 at full sampling and (10 μm)3 at compressed sensing, which far exceeds the resolution of previous embryonic MR studies. The hardware and the pulse sequence were improved to achieve higher spatial resolution. Line profile, signal-to-noise ratio, and histogram analysis using phantom images were performed to verify that the resolution and the voxel size were identical. Comparison with optical microscopy images of embryo specimens at the same developmental stage was performed to confirm that the microstructures were well delineated. Our results show that imaging at this high resolution effectively depicts the microstructures of human embryos. This technology is the cornerstone for constructing an unprecedented high-quality atlas that will contribute to the development of human embryology.
Collapse
Affiliation(s)
- Kazuyuki Makihara
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Kunieda
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Yamaguchi
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwanoha 6-5-1, Kashiwa, Chiba, Japan
| | - Takashi Nakamura
- Molecular Characterization Unit, Center for Sustainable Resource Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yasuhiko Terada
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Utsunomiya N, Nakano S, Katsube M, Yamada S. Three-dimensional morphological analysis of the human spleen and its surrounding organs during the early fetal period. Congenit Anom (Kyoto) 2023; 63:154-163. [PMID: 37526049 DOI: 10.1111/cga.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/23/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023]
Abstract
The spleen has variations in its morphology and is considered to acquire a defined shape in the third month of gestation. However, few studies have investigated spleen development during the first 3 months of fetal life. This study aimed to determine the three-dimensional (3D) morphogenesis of the spleen during the third month of gestation. In this study, 30 fetal specimens (crown-rump length [CRL]: 22-103 mm) were subjected to magnetic resonance imaging analysis. We manually segmented the spleen, stomach, and adrenal gland, reconstructed 3D models, and analyzed the volume and shape of these organs. The results showed that the variation in spleen size was large compared to that in other organs. Spleen morphology was classified into six types based on the number of splenic surfaces as follows: two-faced, three-faced, four-faced, five-faced, ovoid, and irregular. Two-faced spleens were only observed in small specimens, whereas three- and four-faced spleens were observed in larger specimens. We also revealed that the number of fetal splenic surfaces increased as CRL enlarged. Additionally, 3D models indicated that some specimens formed their splenic surfaces without contact with the adjacent organs. This suggested that the splenic surface may be caused not only by pressure from the faced organs but also by an intrinsic program. This study may provide a better understanding of the normal development of the spleen during the early fetal period, and may potentially assist future studies in investigating congenital morphological anomalies of the spleen.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiori Nakano
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Imaging fetal anatomy. Semin Cell Dev Biol 2022; 131:78-92. [PMID: 35282997 DOI: 10.1016/j.semcdb.2022.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Due to advancements in ultrasound techniques, the focus of antenatal ultrasound screening is moving towards the first trimester of pregnancy. The early first trimester however remains in part, a 'black box', due to the size of the developing embryo and the limitations of contemporary scanning techniques. Therefore there is a need for images of early anatomical developmental to improve our understanding of this area. By using new imaging techniques, we can not only obtain better images to further our knowledge of early embryonic development, but clear images of embryonic and fetal development can also be used in training for e.g. sonographers and fetal surgeons, or to educate parents expecting a child with a fetal anomaly. The aim of this review is to provide an overview of the past, present and future techniques used to capture images of the developing human embryo and fetus and provide the reader newest insights in upcoming and promising imaging techniques. The reader is taken from the earliest drawings of da Vinci, along the advancements in the fields of in utero ultrasound and MR imaging techniques towards high-resolution ex utero imaging using Micro-CT and ultra-high field MRI. Finally, a future perspective is given about the use of artificial intelligence in ultrasound and new potential imaging techniques such as synchrotron radiation-based CT to increase our knowledge regarding human development.
Collapse
|
7
|
Yamaguchi Y, Murase A, Kodama R, Yamamoto A, Imai H, Yoneyama A, Yamada S. Three-dimensional visualization and quantitative analysis of embryonic and fetal thigh muscles using magnetic resonance and phase-contrast X-ray imaging. J Anat 2022; 241:1310-1323. [PMID: 36123316 DOI: 10.1111/joa.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
The musculoskeletal system around the human hip joint has acquired a suitable structure for erect bipedal walking. However, little is known about the process of separation and maturation of individual muscles during the prenatal period, when muscle composition is acquired. Understanding the maturation process of the normal musculoskeletal system contributes to elucidating the acquisition of bipedal walking in humans and to predicting normal growth and detecting congenital muscle disorders and anomalies. In this study, we clarify the process of thigh muscle maturation from the embryonic stage to the mid-fetal stage using serial sections, phase-contrast X-ray computed tomography, and magnetic resonance imaging. We also provide a 4D atlas of human thigh muscles between 8 and 23 weeks of gestation. As a result, we first show that muscle separation in the lower thigh tends to progress from the superficial to the deep layers and that all musculoskeletal components are formed by Carnegie Stage 22. Next, we show that femur and muscle volume grow in correlation with crown-rump length. Finally, we show that the anterior, abductor, and posterior muscle groups in the thigh contain a high percentage of monoarticular muscle volume by the end of the embryonic period. This ratio approaches that of adult muscle composition during normal early fetal development and is typical of bipedal walking. This study of fetal muscle composition suggests that preparation for postnatal walking may begin in early fetal period.
Collapse
Affiliation(s)
- Yutaka Yamaguchi
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ami Murase
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryota Kodama
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yamamoto
- Medical Education Center, Kyoto University, Kyoto, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Utsunomiya N, Kodama R, Yamaguchi Y, Tsuge I, Yamada S. The development of the tensor vastus intermedius during the human embryonic period and its clinical implications. J Anat 2021; 239:583-588. [PMID: 34028017 PMCID: PMC8349409 DOI: 10.1111/joa.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/04/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
The tensor vastus intermedius (TVI) is a newly discovered muscle located in the anterolateral thigh area and is considered the fifth component of the quadriceps femoris muscle. There have been several papers describing its anatomical and morphological features in detail; however, many features of this muscle, such as its ontology or kinetic functions, remain unknown. The purpose of this study was to determine the initial appearance of the TVI muscle in human embryonic development and to investigate its growth and development. Histological observations were performed on 30 lower limbs of 15 human embryos from Carnegie stage (CS) 21, 22, and 23 (with crown-rump length ranging from 18.7 to 28.7 mm). Myocyte clusters of the TVI were observed between the vastus lateralis and intermedius muscles in 7 out of 10 limbs in CS 22, indicating that the TVI arises during this stage. In CS 23, the TVI was clearly present in all specimens except one. However, neither the aponeurosis nor the tendonous structure of the TVI were observed in these embryonic stages. Formation of the conventional four components of the quadriceps muscle is completed within CS 21; therefore, our results suggest that the TVI is the last element to develop in the quadriceps femoris complex. It is posited that after the embryonic period, the TVI continues to grow, while forming the tendinous structure toward the patella and receiving vascular supply from certain vascular branches. The clinical significance of these findings is that orthopedists and plastic surgeons who perform surgical procedures within the anterolateral thigh (ALT) area should be aware of the anatomy and development of the TVI in order to reduce surgical complications. Our present research aims to contribute to a deeper understanding of the morphogenesis of the TVI and the other femoral extensor muscles.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Department of Plastic and Reconstructive SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
- Congenital Anomaly Research CenterGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryota Kodama
- Human Health SciencesGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaka Yamaguchi
- Congenital Anomaly Research CenterGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Itaru Tsuge
- Department of Plastic and Reconstructive SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigehito Yamada
- Congenital Anomaly Research CenterGraduate School of MedicineKyoto UniversityKyotoJapan
- Human Health SciencesGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Takakuwa T, Shiraishi N, Terashima M, Yamanaka M, Okamoto I, Imai H, Ishizu K, Yamada S, Ishikawa A, Kanahashi T. Morphology and morphometry of the human early foetal brain: A three-dimensional analysis. J Anat 2021; 239:498-516. [PMID: 33754346 PMCID: PMC8273585 DOI: 10.1111/joa.13433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022] Open
Abstract
Morphometric analyses in the early foetal phase (9-13 postconceptional week) are critical for evaluating normal brain growth. In this study, we assessed sequential morphological and morphometric changes in the foetal brain during this period using high-resolution T1-weighted magnetic resonance imaging (MRI) scans from 21 samples preserved at Kyoto University. MRI sectional views (coronal, mid-sagittal, and horizontal sections) and 3D reconstructions of the whole brain revealed sequential changes in its external morphology and internal structures. The cerebrum's gross external view, lateral ventricle and choroid plexus, cerebral wall, basal ganglia and thalamus, and corpus callosum were assessed. The development of the cerebral cortex, white matter microstructure, and basal ganglia can be well-characterized using MRI scans. The insula became apparent and deeply impressed as brain growth progressed. A thick, densely packed cellular ventricular/subventricular zone and ganglionic eminence became apparent at high signal intensity. We detected the emergence of important landmarks which may be candidates in the subdivision processes during the early foetal period; the corpus callosum was first detected in the sample with crown-rump length (CRL) 62 mm. A primary sulcus on the medial part of the cortex (cingulate sulcus) was observed in the sample with CRL 114 mm. In the cerebellum, the hemispheres, posterolateral fissure, union of the cerebellar halves, and definition of the vermis were observed in the sample with CRL 43.5 mm, alongside the appearance of a primary fissure in the sample with CRL 56 mm and the prepyramidal fissure in the sample with CRL 75 mm. The volumetric, linear, and angle measurements revealed the comprehensive and regional development, growth, and differentiation of brain structures during the early foetal phase. The early foetal period was neither morphologically nor morphometrically uniform. The cerebral proportion (length/height) and the angle of cerebrum to the standard line at the lateral view of the cerebrum, which may reflect the growth and C-shape formation of the cerebrum, may be a candidate for subdividing the early foetal period. Future precise analyses must establish a staging system for the brain during the early foetal period. This study provides insights into brain structure, allowing for a correlation with functional maturation and facilitating the early detection of brain damage and abnormal development.
Collapse
Affiliation(s)
- Tetsuya Takakuwa
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naoki Shiraishi
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Mei Terashima
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Miki Yamanaka
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Ikue Okamoto
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hirohiko Imai
- Department of Systems ScienceGraduate School of InformaticsKyoto UniversityKyotoJapan
| | - Koichi Ishizu
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigehito Yamada
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
- Congenital Anomaly Research CenterGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Aoi Ishikawa
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Toru Kanahashi
- Human Health ScienceGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
10
|
Katsube M, Yamada S, Utsunomiya N, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Vora SR, Morimoto N. A 3D analysis of growth trajectory and integration during early human prenatal facial growth. Sci Rep 2021; 11:6867. [PMID: 33767268 PMCID: PMC7994314 DOI: 10.1038/s41598-021-85543-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 01/03/2023] Open
Abstract
Significant shape changes in the human facial skeleton occur in the early prenatal period, and understanding this process is critical for studying a myriad of congenital facial anomalies. However, quantifying and visualizing human fetal facial growth has been challenging. Here, we applied quantitative geometric morphometrics (GM) to high-resolution magnetic resonance images of human embryo and fetuses, to comprehensively analyze facial growth. We utilized non-linear growth estimation and GM methods to assess integrated epigenetic growth between masticatory muscles and associated bones. Our results show that the growth trajectory of the human face in the early prenatal period follows a curved line with three flexion points. Significant antero-posterior development occurs early, resulting in a shift from a mandibular prognathic to relatively orthognathic appearance, followed by expansion in the lateral direction. Furthermore, during this time, the development of the zygoma and the mandibular ramus is closely integrated with the masseter muscle.
Collapse
Affiliation(s)
- Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsuko Utsunomiya
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yutaka Yamaguchi
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsuya Takakuwa
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsushi Saito
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Siddharth R Vora
- Oral Health Sciences, University of British Columbia, JBM 372-2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
Fourniquet SE, Beiter KJ, Mussell JC. Ethical Rationales and Guidelines for the Continued Use of Archival Collections of Embryonic and Fetal Specimens. ANATOMICAL SCIENCES EDUCATION 2019; 12:407-416. [PMID: 31127982 DOI: 10.1002/ase.1897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Benefits from the use of cadavers in anatomical education are well described. Historically, human embryos and fetal cadavers were used in anatomy education to understand development and congenital malformations. Recently, three-dimensional printed models produced from archival fetal specimens, and online repositories of images from archival collections of embryos and fetuses, have been used as an educational tool in human development courses. Given that the archival specimens were likely obtained prior to the era of informed consent, this raises questions about their appropriate and ethical use. Because some institutions in the United States retain archival collections of embryonic and fetal specimens that were once used as educational tools, their existence and utility require frequent reexamination against contemporary ethical frameworks to guide appropriate use or utilization. Four ethical rationales for uses of these collections are examined, including destruction, indefinite storage, use in research, and use in health professions education. Guidelines for the use of archival collections of human embryos and fetuses are presented. Indefinite storage and use in health professions education are supported, while use in research is also permitted, however, such use is limited and dependent on circumstance and purpose. The development of current digital repositories and three-dimensionally printed models based on archival collections that were collected without informed consent, or those promoting commercial opportunity, are not supported. New embryonic and fetal donations obtained with informed consent should include reference to potential uses with new technology and virtual, genetic, or imaging applications.
Collapse
Affiliation(s)
| | - Kaylin J Beiter
- Louisiana State University School of Medicine, New Orleans, Louisiana
| | - Jason C Mussell
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
12
|
Katsube M, Yamada S, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Shimizu A, Suzuki S. Critical Growth Processes for the Midfacial Morphogenesis in the Early Prenatal Period. Cleft Palate Craniofac J 2019; 56:1026-1037. [PMID: 30773047 DOI: 10.1177/1055665619827189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Congenital midfacial hypoplasia often requires intensive treatments and is a typical condition for the Binder phenotype and syndromic craniosynostosis. The growth trait of the midfacial skeleton during the early fetal period has been assumed to be critical for such an anomaly. However, previous embryological studies using 2-dimensional analyses and specimens during the late fetal period have not been sufficient to reveal it. OBJECTIVE To understand the morphogenesis of the midfacial skeleton in the early fetal period via 3-dimensional quantification of the growth trait and investigation of the developmental association between the growth centers and midface. METHODS Magnetic resonance images were obtained from 60 human fetuses during the early fetal period. Three-dimensional shape changes in the craniofacial skeleton along growth were quantified and visualized using geometric morphometrics. Subsequently, the degree of development was computed. Furthermore, the developmental association between the growth centers and the midfacial skeleton was statistically investigated and visualized. RESULTS The zygoma expanded drastically in the anterolateral dimension, and the lateral part of the maxilla developed forward until approximately 13 weeks of gestation. The growth centers such as the nasal septum and anterior portion of the sphenoid were highly associated with the forward growth of the midfacial skeleton (RV = 0.589; P < .001). CONCLUSIONS The development of the midface, especially of the zygoma, before 13 weeks of gestation played an essential role in the midfacial development. Moreover, the growth centers had a strong association with midfacial forward growth before birth.
Collapse
Affiliation(s)
- Motoki Katsube
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Yamaguchi
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- 3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yamamoto
- 4 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Imai
- 5 Department of Systems Science, Kyoto University Graduate School of Informatics, Kyoto, Japan
| | - Atsushi Saito
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akinobu Shimizu
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigehiko Suzuki
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Yamada S, Nagai M, Hagiwara M. The 40th Anniversary of the Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine. Anat Rec (Hoboken) 2018; 301:947-950. [PMID: 29663720 DOI: 10.1002/ar.23786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023]
Abstract
The Congenital Anomaly Research Center at Kyoto University's Graduate School of Medicine was established in 1975; in 2015 the center celebrated its 40th anniversary. The celebration of this anniversary included three special projects: (1) forming an achievement list, (2) preparing for a specimen exhibition, and (3) holding an anniversary symposium. This special issue of The Anatomical Record is devoting to detailing these anniversary projects. Anat Rec, 301:947-950, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Momoko Nagai
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|