1
|
Ding Y, Chen ZQ, Pan WF, Chen HJ, Wu M, Lyu YQ, Xie H, Huang YC, Chen ZZ, Chen F. The association and underlying mechanism of the digit ratio (2D:4D) in hypospadias. Asian J Androl 2024; 26:356-365. [PMID: 38563741 PMCID: PMC11280205 DOI: 10.4103/aja202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
The second-to-fourth digit (2D:4D) ratio is thought to be associated with prenatal androgen exposure. However, the relationship between the 2D:4D ratio and hypospadias is poorly understood, and its molecular mechanism is not clear. In this study, by analyzing the hand digit length of 142 boys with hypospadias (23 distal, 68 middle, and 51 proximal) and 196 controls enrolled in Shanghai Children's Hospital (Shanghai, China) from December 2020 to December 2021, we found that the 2D:4D ratio was significantly increased in boys with hypospadias ( P < 0.001) and it was positively correlated with the severity of the hypospadias. This was further verified by the comparison of control mice and prenatal low testosterone mice model obtained by knocking out the risk gene (dynein axonemal heavy chain 8 [ DNAH8 ]) associated with hypospadias. Furthermore, the discrepancy was mainly caused by a shift in 4D. Proteomic characterization of a mouse model validated that low testosterone levels during pregnancy can impair the growth and development of 4D. Comprehensive mechanistic explorations revealed that during the androgen-sensitive window, the downregulation of the androgen receptor (AR) caused by low testosterone levels, as well as the suppressed expression of chondrocyte proliferation-related genes such as Wnt family member 5a ( Wnt5a ), Wnt5b , Smad family member 2 ( Smad2 ), and Smad3 ; mitochondrial function-related genes in cartilage such as AMP-activated protein kinase ( AMPK ) and nuclear respiratory factor 1 ( Nrf-1 ); and vascular development-related genes such as myosin light chain ( MLC ), notch receptor 3 ( Notch3 ), and sphingosine kinase 1 ( Sphk1 ), are responsible for the limitation of 4D growth, which results in a higher 2D:4D ratio in boys with hypospadias via decreased endochondral ossification. This study indicates that the ratio of 2D:4D is a risk marker of hypospadias and provides a potential molecular mechanism.
Collapse
Affiliation(s)
- Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zu-Quan Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wen-Feng Pan
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hao-Jie Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Min Wu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Qing Lyu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Chen Huang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhong-Zhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center for Hypospadias, Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
2
|
Amato CM, Xu X, Yao HHC. An extra-genital cell population contributes to urethra closure during mouse penis development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.564741. [PMID: 37986842 PMCID: PMC10659392 DOI: 10.1101/2023.11.09.564741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hypospadias, or incomplete closure of the urethra along the penis, is the second most common birth defect in the United States. We discovered a population of extra-genital mesenchymal cells that are essential for proper penile urethra closure in mouse embryos. This extra-genital population first appeared in the mesenchyme posterior to the hindlimb of the fetus after the onset of penis formation. These extra-genital cells, which transiently express a lineage marker Nr5a1, migrated centrally and colonized the penis bilateral to the urethra epithelium. Removal of the Nr5a1+ extra-genital cells, using a cell-type specific ablation model, resulted in severe hypospadias. The absence of extra-genital cells had the most significant impacts on another mesenchymal cells, the peri-urethra that were immediately adjacent to the Nr5a1+ extra-genital cells. Single cell mRNA sequencing revealed that the extra-genital cells extensively interact with the peri-urethra, particularly through Neuregulin 1, an epidermal Growth Factor (EGF) ligand. Disruption of Neuregulin 1 signaling in the ex-vivo slice culture system led to failure of urethra closure, recapitulating the phenotypes of extra-genital cell ablation. These results demonstrate that the Nr5a1+ extra-genital mesenchymal cells from outside of the fetal penis are indispensable for urethra closure through their interaction with the peri-urethra mesenchymal cells. This discovery provides a new entry point to understand the biology of penis formation and potential causes of hypospadias in humans.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, US
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Gozar H, Bara Z, Dicu E, Derzsi Z. Current perspectives in hypospadias research: A scoping review of articles published in 2021 (Review). Exp Ther Med 2023; 25:211. [PMID: 37090085 PMCID: PMC10119991 DOI: 10.3892/etm.2023.11910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Hundreds of papers are written about hypospadias every year referring to all aspects of the pathology, being one of the most common congenital malformations. The present study conducted a scoping review of articles published in 2021 to present the main issues and summarize current perspectives and achievements in the field. It searched for the keyword 'hypospadias' in the three most popular databases (PubMed, Scopus and Web of Science). After the analysis of the publications, they were categorized into different domains. The present review was performed respecting the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA ScR) guidelines. A total of 284 articles were included. These were published in 142 different journals. The most accessed was the Journal of Paediatric Urology with 54 articles. The main identified domains were related to surgical techniques, postoperative care, complications, anesthesia, anatomical factors, genetics, environmental factors, endocrinology, associated malformations, questionnaires and recommendations, management, biological materials, animal models, retrospective studies of centers, social media, bibliometrics, small gestational age, neoplasm, or fertility. Promising modifications of existing surgical techniques were presented with improved outcomes for both the proximal and distal types of hypospadias. Relevant anatomical and etiological, and also genetic factors were clarified. Aspects of the peri- and postoperative management referring to the antibiotherapy, analgesia, dressing techniques, and the future use of novel bioengineering agents to prevent, reduce or treat the occurring complications were discussed.
Collapse
Affiliation(s)
- Horea Gozar
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
- Department of Pediatric Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș 540142, Romania
| | - Zsolt Bara
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
| | - Emilia Dicu
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
| | - Zoltán Derzsi
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
- Department of Pediatric Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș 540142, Romania
| |
Collapse
|
4
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
5
|
Zhu X, Xu M, Leu NA, Morrisey EE, Millar SE. FZD2 regulates limb development by mediating β-catenin-dependent and -independent Wnt signaling pathways. Dis Model Mech 2023; 16:dmm049876. [PMID: 36867021 PMCID: PMC10073008 DOI: 10.1242/dmm.049876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Human Robinow syndrome (RS) and dominant omodysplasia type 2 (OMOD2), characterized by skeletal limb and craniofacial defects, are associated with heterozygous mutations in the Wnt receptor FZD2. However, as FZD2 can activate both canonical and non-canonical Wnt pathways, its precise functions and mechanisms of action in limb development are unclear. To address these questions, we generated mice harboring a single-nucleotide insertion in Fzd2 (Fzd2em1Smill), causing a frameshift mutation in the final Dishevelled-interacting domain. Fzd2em1Smill mutant mice had shortened limbs, resembling those of RS and OMOD2 patients, indicating that FZD2 mutations are causative. Fzd2em1Smill mutant embryos displayed decreased canonical Wnt signaling in developing limb mesenchyme and disruption of digit chondrocyte elongation and orientation, which is controlled by the β-catenin-independent WNT5A/planar cell polarity (PCP) pathway. In line with these observations, we found that disruption of FZD function in limb mesenchyme caused formation of shortened bone elements and defects in Wnt/β-catenin and WNT5A/PCP signaling. These findings indicate that FZD2 controls limb development by mediating both canonical and non-canonical Wnt pathways and reveal causality of pathogenic FZD2 mutations in RS and OMOD2 patients.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E. Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Tanaka K, Matsumaru D, Suzuki K, Yamada G, Miyagawa S. The role of p63 in embryonic external genitalia outgrowth in mice. Dev Growth Differ 2023; 65:132-140. [PMID: 36680528 PMCID: PMC11520970 DOI: 10.1111/dgd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh-Wnt/Ctnnb1-Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.
Collapse
Affiliation(s)
- Kosei Tanaka
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular ToxicologyGifu Pharmaceutical UniversityGifuJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Gen Yamada
- Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
- Division of Biological Environment Innovation, Research Institute for Science and TechnologyTokyo University of ScienceKatsushikaJapan
| |
Collapse
|
7
|
Acebedo AR, Alcantara MC, Nakanishi T, Ogawa T, Yamada G, Suzuki K. Exposure to the organophosphate pesticide fenitrothion directly induced defects in mouse embryonic external genitalia. Toxicol Sci 2022; 190:13-22. [PMID: 35951760 DOI: 10.1093/toxsci/kfac085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many industrial chemicals have been reported as anti-androgenic substances. Exposure to these substances represents a potential risk to human health, particularly to the development of reproductive organs such as embryonic external genitalia (eExG). Currently, there is a need for more assay systems that can elucidate the toxicological actions and mechanisms of endocrine disrupting chemicals (EDCs). In this study, we show that the eExG slice culture assay is useful for the evaluation of the differing modes of action of EDCs on urethra formation. We assessed the possible endocrine disrupting activity of three chemicals with reported anti-androgenic function, diazinon (DZN), dibutyl phthalate (DBP) and fenitrothion (FNT) on eExG slices. Exposure to FNT, but not DZN and DBP, induced defects of androgen-induced urethral masculinization and reduced expression of the androgen-target gene Mafb. Live imaging analyses showed that FNT treatment inhibited androgen-dependent MAFB induction within 12 hours. Furthermore, FNT-treated tissue slices showed reduced expression of the androgen receptor (AR). These results indicate that FNT disrupts androgen signaling by reduction of AR expression during androgen-induced eExG masculinization. The current study thus highlights the importance of animal models which allow for the effective assessment of tissue-specific endocrine-disrupting activity to further reveal the etiology of chemical-induced congenital anomalies.
Collapse
Affiliation(s)
- Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Takehiko Ogawa
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
8
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Kajimoto M, Suzuki K, Ueda Y, Fujimoto K, Takeo T, Nakagata N, Hyuga T, Isono K, Yamada G. Androgen/Wnt/β-catenin signal axis augments cell proliferation of the mouse erectile tissue, corpus cavernosum. Congenit Anom (Kyoto) 2022; 62:123-133. [PMID: 35318743 DOI: 10.1111/cga.12465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
The murine penile erectile tissues including corpus cavernosum (CC) are composed of blood vessels, smooth muscle, and connective tissue, showing marked sexual differences. It has been known that the androgens are required for sexually dimorphic organogenesis. It is however unknown about the features of androgen signaling during mouse CC development. It is also unclear how androgen-driven downstream factors are involved such processes. In the current study, we analyzed the onset of sexually dimorphic CC formation based on histological analyses, the dynamics of androgen receptor (AR) expression, and regulation of cell proliferation. Of note, we identified Dickkopf-related protein 2 (Dkk2), an inhibitor of β-catenin signaling, was predominantly expressed in female CC compared with male. Furthermore, administration of androgens resulted in activation of β-catenin signaling. We have found the Sox9 gene, one of the essential markers for chondrocyte, was specifically expressed in the developing CC. Hence, we utilized CC-specific, Sox9 CreERT2 , β-catenin conditional mutant mice. Such mutant mice showed defective cell proliferation. Furthermore, introduction of activated form of β-catenin mutation (gain of function mutation for Wnt/β-catenin signaling) in CC induced augmented cell proliferation. Altogether, we revealed androgen-Wnt/β-catenin signal dependent cell proliferation was essential for sexually dimorphic CC formation. These findings open new avenues for understanding developmental mechanisms of androgen-dependent cell proliferation during sexual differentiation.
Collapse
Affiliation(s)
- Mizuki Kajimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ueda
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Pediatric Urology, Jichi Medical University, Children's Medical Center Tochigi, Tochigi, Japan
| | - Kyoichi Isono
- Laboratory Animal Center, Wakayama Medical University, Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|