1
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
2
|
Li B, Lin D, Zhai X, Fan G, Zhao Z, Cao X, Yang H, Che T, Yuan Z, Liu T. Conformational Changes in Three-Dimensional Chromatin Structure in Paulownia fortunei After Phytoplasma Infection. PHYTOPATHOLOGY 2022; 112:373-386. [PMID: 34124940 DOI: 10.1094/phyto-01-21-0030-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Higher-order chromatin structures play important roles in regulating multiple biological processes such as growth and development as well as biotic and abiotic stress response. However, little is known about three-dimensional chromatin structures in Paulownia or about whole-genome chromatin conformational changes that occur in response to Paulownia witches' broom (PaWB) disease. We used high-throughput chromosome conformation capture (Hi-C) to obtain genome-wide profiles of chromatin conformation in both healthy and phytoplasma-infected Paulownia fortunei genome. The heat map results indicated that the strongest interactions between chromosomes were in the telomeres. We confirmed that the main structural characteristics of A/B compartments, topologically associated domains, and chromatin loops were prominent in the Paulownia genome and were clearly altered in phytoplasma-infected plants. By combining chromatin immunoprecipitation sequencing, Hi-C signals, and RNA sequencing data, we inferred that the chromatin structure changed and the modification levels of three histones (H3K4me3/K9ac/K36me3) increased in phytoplasma-infected P. fortunei, which was associated with changes of transcriptional activity. We concluded that for epigenetic modifications, transcriptional activity might function in combination to shape chromatin packing in healthy and phytoplasm-infected Paulownia. Finally, 11 genes (e.g., RPN6, Sec61 subunit-α) that were commonly located at specific topologically associated domain boundaries, A/B compartment switching and specific loops, and had been associated with histone marks were identified and considered as closely related to PaWB stress. Our results provide new insights into the nexus between gene regulation and chromatin conformational alterations in nonmodel plants upon phytopathogen infection and plant disease resistance.
Collapse
Affiliation(s)
- Bingbing Li
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Dan Lin
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Xiaoqiao Zhai
- Forestry Academy of Henan, Zhengzhou, Henan 450002, People's Republic of China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Xibing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Haibo Yang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Tiandong Che
- Annoroad Gene Technology Co., Ltd., Beijing 100176, People's Republic of China
| | - Zan Yuan
- Annoroad Gene Technology Co., Ltd., Beijing 100176, People's Republic of China
| | - Tao Liu
- Annoroad Gene Technology Co., Ltd., Beijing 100176, People's Republic of China
| |
Collapse
|