1
|
Giuliatti S, Benedetti AFF, Ramos RM, Petroli RJ, Domenice S, Mendonca BB, Batista RL. Hydropathic AF-2 variants in the androgen receptor gene among androgen insensitivity patients. Andrology 2024. [PMID: 38923406 DOI: 10.1111/andr.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Androgen insensitivity syndrome (AIS) is a common condition among individuals with differences of sexual development (DSD) and results from germline allelic variants in the androgen receptor (AR) gene. Understanding the phenotypic consequences of AR allelic variants that disrupt the activation function 2 (AF2) region is essential to grasping its clinical significance. OBJECTIVES This study aims to provide insights into the phenotypic characteristics and clinical impact of AR mutations affecting the AF2 region in AIS patients. We achieve this by reviewing reported AR variants in the AF2 region among individuals with AIS, including identifying a new phenotype associated with the c.2138T>C variant (p.Leu713Pro) in the AR gene. MATERIALS AND METHODS We comprehensively reviewed AR variants within the AF2 region reported in AIS and applied molecular dynamics simulations to assess the impact of the p.Leu713Pro variant on protein dynamics. RESULTS Our review of reported AR variants in the AF2 region revealed a spectrum of phenotypic outcomes in AIS patients. Molecular dynamics simulations indicated that the p.Leu713Pro variant significantly alters the local dynamics of the AR protein and disrupts the correlation and covariance between variables. DISCUSSION The diverse phenotypic presentations observed among individuals with AR variants in the AF2 region highlight the complexity of AIS. The altered protein dynamics resulting from the p.Leu713Pro variant further emphasize the importance of the AF2 region in AR function. CONCLUSION Our study provides valuable insights into AR mutations' phenotypic characteristics and clinical impact on the AF2 region in AIS. Moreover, the disruption of protein dynamics underscores the significance of the AF2 region in AR function and its role in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Silvana Giuliatti
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Anna Flavia Figueredo Benedetti
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas - UFAL, Alagoas, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo (ICESP), São Paulo, Brazil
| |
Collapse
|
2
|
Ramos RM, Petroli RJ, D'Alessandre NDR, Guardia GDA, Afonso ACDF, Nishi MY, Domenice S, Galante PAF, Mendonca BB, Batista RL. Small Indels in the Androgen Receptor Gene: Phenotype Implications and Mechanisms of Mutagenesis. J Clin Endocrinol Metab 2023; 109:68-79. [PMID: 37572362 DOI: 10.1210/clinem/dgad470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
CONTEXT Despite high abundance of small indels in human genomes, their precise roles and underlying mechanisms of mutagenesis in Mendelian disorders require further investigation. OBJECTIVE To profile the distribution, functional implications, and mechanisms of small indels in the androgen receptor (AR) gene in individuals with androgen insensitivity syndrome (AIS). METHODS We conducted a systematic review of previously reported indels within the coding region of the AR gene, including 3 novel indels. Distribution throughout the AR coding region was examined and compared with genomic population data. Additionally, we assessed their impact on the AIS phenotype and investigated potential mechanisms driving their occurrence. RESULTS A total of 82 indels in AIS were included. Notably, all frameshift indels exhibited complete AIS. The distribution of indels across the AR gene showed a predominance in the N-terminal domain, most leading to frameshift mutations. Small deletions accounted for 59.7%. Most indels occurred in nonrepetitive sequences, with 15.8% situated within triplet regions. Gene burden analysis demonstrated significant enrichment of frameshift indels in AIS compared with controls (P < .00001), and deletions were overrepresented in AIS (P < .00001). CONCLUSION Our findings underscore a robust genotype-phenotype relationship regarding small indels in the AR gene in AIS, with a vast majority presenting complete AIS. Triplet regions and homopolymeric runs emerged as prone loci for small indels within the AR. Most were frameshift indels, with polymerase slippage potentially explaining half of AR indel occurrences. Complex frameshift indels exhibited association with palindromic runs. These discoveries advance understanding of the genetic basis of AIS and shed light on potential mechanisms underlying pathogenic small indel events.
Collapse
Affiliation(s)
- Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas-UFAL, Maceió, AL, 57072-900, Brazil
| | | | | | - Ana Caroline de Freitas Afonso
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Mirian Yumie Nishi
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | | | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, Medical School, University of São Paulo (USP), São Paulo, SP, 05403-000, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade, de Medicina da Universidade de São Paulo (ICESP), São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
3
|
Androgen Receptor and Its Splicing Variant 7 Expression in Peripheral Blood Mononuclear Cells and in Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer. Cells 2020; 9:cells9010203. [PMID: 31947623 PMCID: PMC7016895 DOI: 10.3390/cells9010203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Androgen receptor (AR) signaling remains crucial in castration-resistant prostate cancer (CRPC). Since it is also essential in immune cells, we studied whether the expression of AR full-length (ARFL) and its splicing variant ARV7 in peripheral blood mononuclear cells (PBMC) predicts systemic treatment response in mCRPC in comparison with circulating-tumor cells (CTC). We measured ARFL and ARV7 mRNA in PBMC and CTC from patients prior to receiving abiraterone (AA), enzalutamide (E), or taxanes by a pre-amplification plus quantitative reverse-transcription PCR. They were also tested in LNCaP-ARV7-transfected and in 22RV1 docetaxel-resistant (22RV1DR) cells. We studied 171 PBMC from 136 patients and from 24 non-cancer controls, and 47 CTC from 22 patients. High PBMC ARV7 levels correlated with worse AA/E and better taxane response. In taxane-treated patients high PBMC ARFL also correlated with longer progression-free survival (PFS). High ARV7 and ARFL expression were independently associated with better biochemical-PFS. Conversely, high CTC ARV7 and ARFL correlated with shorter radiological-PFS and overall survival, respectively. High ARV7 in 22RV1DR and LNCaP-ARV7 cells correlated with taxane resistance. In conclusion, ARFL and ARV7 at PBMC or CTC have a different predictive role in the taxane response, suggesting a potential influence of the AR pathway from PBMC in such response modulation.
Collapse
|