1
|
Pande S, Majethia P, Nair K, Rao LP, Mascarenhas S, Kaur N, do Rosario MC, Neethukrishna K, Chaurasia A, Hunakunti B, Jadhav N, Xavier S, Kumar J, Bhat V, Bhavani GS, Narayanan DL, Yatheesha BL, Patil SJ, Nampoothiri S, Kamath N, Aroor S, Bhat Y R, Lewis LE, Sharma S, Bajaj S, Sankhyan N, Siddiqui S, Nayak SS, Bielas S, Girisha KM, Shukla A. De novo variants underlying monogenic syndromes with intellectual disability in a neurodevelopmental cohort from India. Eur J Hum Genet 2024; 32:1291-1298. [PMID: 38114583 PMCID: PMC7616498 DOI: 10.1038/s41431-023-01513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kausthubham Neethukrishna
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ankur Chaurasia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Bhagesh Hunakunti
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Nalesh Jadhav
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sruthy Xavier
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - B L Yatheesha
- Dheemahi Child Neurology and Development Center, Shivamogga, India
| | - Siddaramappa J Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shrikiran Aroor
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie E Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | | | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Secunderabad, Hyderabad, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
2
|
Gross A, Müller J, Chrustowicz J, Strasser A, Gottemukkala KV, Sherpa D, Schulman BA, Murray PJ, Alpi AF. Skraban-Deardorff intellectual disability syndrome-associated mutations in WDR26 impair CTLH E3 complex assembly. FEBS Lett 2024; 598:978-994. [PMID: 38575527 PMCID: PMC7616460 DOI: 10.1002/1873-3468.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Patients with Skraban-Deardorff syndrome (SKDEAS), a neurodevelopmental syndrome associated with a spectrum of developmental and intellectual delays and disabilities, harbor diverse mutations in WDR26, encoding a subunit of the multiprotein CTLH E3 ubiquitin ligase complex. Structural studies revealed that homodimers of WDR26 bridge two core-CTLH E3 complexes to generate giant, hollow oval-shaped supramolecular CTLH E3 assemblies. Additionally, WDR26 mediates CTLH E3 complex binding to subunit YPEL5 and functions as substrate receptor for the transcriptional repressor HBP1. Here, we mapped SKDEAS-associated mutations on a WDR26 structural model and tested their functionality in complementation studies using genetically engineered human cells lacking CTLH E3 supramolecular assemblies. Despite the diversity of mutations, 15 of 16 tested mutants impaired at least one CTLH E3 complex function contributing to complex assembly and interactions, thus providing first mechanistic insights into SKDEAS pathology.
Collapse
Affiliation(s)
- Annette Gross
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Judith Müller
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Strasser
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Karthik V. Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A. Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter J. Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Arno F. Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Felício D, Santos M. Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:678-687. [PMID: 36892783 PMCID: PMC10951003 DOI: 10.1007/s12311-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.
Collapse
Affiliation(s)
- Daniela Felício
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Zhang S, Cui Q, Yang S, Zhang F, Li C, Wang X, Lei B, Sheng X. Exome and genome sequencing to unravel the precise breakpoints of partial trisomy 6q and partial Monosomy 2q. BMC Pediatr 2023; 23:586. [PMID: 37993819 PMCID: PMC10664609 DOI: 10.1186/s12887-023-04368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Patients with complex phenotypes and a chromosomal translocation are particularly challenging, since several potentially pathogenic mechanisms need to be investigated. CASE PRESENTATION Here, we combined exome and genome sequencing techniques to identify the precise breakpoints of heterozygous microduplications in the 6q25.3-q27 region and microdeletions in the 2q37.1-q37.3 region in a proband. The 5-year-old girl exhibited a severe form of congenital cranial dysinnervation disorder (CCDD) in addition to skeletal dysmorphism anomalies and severe intellectual disability. This is the second case affecting chromosomes 2q and 6q. The individual's karyotype showed an unbalanced translocation 46,XX,del(2)t(2;6)(q37.1;q25.3), which was inherited from her unaffected father [46,XY,t(2;6)(q37.1;q25.3)]. We also obtained the precise breakpoints of a de novo heterozygous copy number deletion [del(2)(q37.1q37.3)chr2:g.232963568_24305260del] and a copy number duplication [dup(6)(q25.3q27)chr6:g.158730978_170930050dup]. The parental origin of the observed balanced translocation was not clear because the parents declined genetic testing. CONCLUSION Patients with a 2q37 deletion and 6q25.3 duplication may exhibit severe significant neurological and skeletal dysmorphisms, and the utilization of exome and genome sequencing techniques has the potential to unveil the entire translocation of the CNV and the precise breakpoint.
Collapse
Affiliation(s)
- Shuang Zhang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Qianwei Cui
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Shangying Yang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Fangxia Zhang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Chunxia Li
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Xiaoguang Wang
- People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), Ningxia Eye Hospital, Yinchuan, 750001, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Xunlun Sheng
- Gansu Aier Ophthalmology & Optometry Hospital, Lanzhou, 730030, China.
| |
Collapse
|
5
|
Chung CCY, Hue SPY, Ng NYT, Doong PHL, Chu ATW, Chung BHY. Meta-analysis of the diagnostic and clinical utility of exome and genome sequencing in pediatric and adult patients with rare diseases across diverse populations. Genet Med 2023; 25:100896. [PMID: 37191093 DOI: 10.1016/j.gim.2023.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE This meta-analysis aims to compare the diagnostic and clinical utility of exome sequencing (ES) vs genome sequencing (GS) in pediatric and adult patients with rare diseases across diverse populations. METHODS A meta-analysis was conducted to identify studies from 2011 to 2021. RESULTS One hundred sixty-one studies across 31 countries/regions were eligible, featuring 50,417 probands of diverse populations. Diagnostic rates of ES (0.38, 95% CI 0.36-0.40) and GS (0.34, 95% CI 0.30-0.38) were similar (P = .1). Within-cohort comparison illustrated 1.2-times odds of diagnosis by GS over ES (95% CI 0.79-1.83, P = .38). GS studies discovered a higher range of novel genes than ES studies; yet, the rate of variant of unknown significance did not differ (P = .78). Among high-quality studies, clinical utility of GS (0.77, 95% CI 0.64-0.90) was higher than that of ES (0.44, 95% CI 0.30-0.58) (P < .01). CONCLUSION This meta-analysis provides an important update to demonstrate the similar diagnostic rates between ES and GS and the higher clinical utility of GS over ES. With the newly published recommendations for clinical interpretation of variants found in noncoding regions of the genome and the trend of decreasing variant of unknown significance and GS cost, it is expected that GS will be more widely used in clinical settings.
Collapse
Affiliation(s)
| | - Shirley P Y Hue
- Hong Kong Genome Institute, Hong Kong Special Administrative Region
| | - Nicole Y T Ng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Phoenix H L Doong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Annie T W Chu
- Hong Kong Genome Institute, Hong Kong Special Administrative Region.
| | - Brian H Y Chung
- Hong Kong Genome Institute, Hong Kong Special Administrative Region; Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Lumaka A, Fasquelle C, Debray FG, Alkan S, Jacquinet A, Harvengt J, Boemer F, Mulder A, Vaessen S, Viellevoye R, Palmeira L, Charloteaux B, Brysse A, Bulk S, Rigo V, Bours V. Rapid Whole Genome Sequencing Diagnoses and Guides Treatment in Critically Ill Children in Belgium in Less than 40 Hours. Int J Mol Sci 2023; 24:4003. [PMID: 36835410 PMCID: PMC9967120 DOI: 10.3390/ijms24044003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Rapid Whole Genome Sequencing (rWGS) represents a valuable exploration in critically ill pediatric patients. Early diagnosis allows care to be adjusted. We evaluated the feasibility, turnaround time (TAT), yield, and utility of rWGS in Belgium. Twenty-one unrelated critically ill patients were recruited from the neonatal intensive care units, the pediatric intensive care unit, and the neuropediatric unit, and offered rWGS as a first tier test. Libraries were prepared in the laboratory of human genetics of the University of Liège using Illumina DNA PCR-free protocol. Sequencing was performed on a NovaSeq 6000 in trio for 19 and in duo for two probands. The TAT was calculated from the sample reception to the validation of results. Clinical utility data were provided by treating physicians. A definite diagnosis was reached in twelve (57.5%) patients in 39.80 h on average (range: 37.05-43.7). An unsuspected diagnosis was identified in seven patients. rWGS guided care adjustments in diagnosed patients, including a gene therapy, an off-label drug trial and two condition-specific treatments. We successfully implemented the fastest rWGS platform in Europe and obtained one of the highest rWGS yields. This study establishes the path for a nationwide semi-centered rWGS network in Belgium.
Collapse
Affiliation(s)
- Aimé Lumaka
- Human Genetic Laboratory, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - Corinne Fasquelle
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | | | - Serpil Alkan
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
- Neuropediatric Division, CHU de Liège—CHR de la Citadelle, University of Liège, 4000 Liège, Belgium
| | - Adeline Jacquinet
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - Julie Harvengt
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - François Boemer
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - André Mulder
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, CHC Mont-Légia, 4000 Liège, Belgium
| | - Sandrine Vaessen
- Neuropediatric Division, CHU de Liège—CHR de la Citadelle, University of Liège, 4000 Liège, Belgium
| | - Renaud Viellevoye
- Neonatology Division, CHU de Liège—CHR de la Citadelle, University of Liège, 4000 Liège, Belgium
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - Benoit Charloteaux
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - Anne Brysse
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - Saskia Bulk
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| | - Vincent Rigo
- Neonatology Division, CHU de Liège—CHR de la Citadelle, University of Liège, 4000 Liège, Belgium
| | - Vincent Bours
- Human Genetic Laboratory, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Center for Human Genetics, Centre Hospitalier Universitaire, 4032 Liège, Belgium
| |
Collapse
|
7
|
Cai T, Huang J, Ma X, Hu S, Zhu L, Zhu J, Feng Z. Case Report: Identification of Two Variants of ALG13 in Families With or Without Seizure and Binocular Strabismus: Phenotypic Spectrum Analysis. Front Genet 2022; 13:892940. [PMID: 35899201 PMCID: PMC9310169 DOI: 10.3389/fgene.2022.892940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Genetic causes in most affected children with intellectual disability and/or development delay remain unknown. Methods: To identify potential variants responsible for these disorders, we recruited 161 affected families and performed whole-exome sequencing and associated bioinformatics analysis. Results: In the present study, we report the identification of variants in the ALG13 gene in two of the families. In family 1, a known pathogenic missense variant (c.23T > C; p.V8A) of ALG13 was identified in a boy and his mother. In family 2, a novel missense variant (c.862C > G; p.L288V) of the same gene was identified in the affected boy and his phenotypically normal mother. Genotype-phenotype correlation analysis by comparing reported 28 different variants (HGMD) showed that three major phenotypes, including various seizures/epilepsy, intellectual disability, and development delay (such as growth, speech, motor, etc.), are present in most affected individuals. However, other phenotypes, such as strabismus and absence of seizure in our second patient, are not reported if any, which may represent a unique case of X-linked recessive nonsyndromic disorder caused by a mutation in ALG13. Conclusion: We identified two missense variants in ALG13 in a cohort of 161 families with affected individuals diagnosed as intellectual disability and/or development delay. A novel c.862C > G mutation may represent a case of X-linked recessive.
Collapse
Affiliation(s)
- Tao Cai
- Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China,Experimental Medicine Section, National Institutes of Health/National Institute of Dental and Craniofacial Research, Bethesda, MD, United States,*Correspondence: Tao Cai, ; Zhichun Feng,
| | - Jieting Huang
- Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Xiuwei Ma
- Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Siqi Hu
- Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China,The National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Lina Zhu
- Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jinwen Zhu
- Angen Gene Medicine Technology, Beijing, China
| | - Zhichun Feng
- Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, Beijing, China,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China,The National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China,*Correspondence: Tao Cai, ; Zhichun Feng,
| |
Collapse
|
8
|
Two Novel Variants of WDR26 in Chinese Patients with Intellectual Disability. Genes (Basel) 2022; 13:genes13050813. [PMID: 35627197 PMCID: PMC9140611 DOI: 10.3390/genes13050813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Skraban-Deardorff syndrome is a rare autosomal dominant genetic disease caused by variants in the WDR26 gene. Here, we report two Chinese patients diagnosed with Skraban-Deardorff syndrome caused by novel de novo, heterozygous pathogenic WDR26 variants c.977delA (p. 12 N326Ifs*2) and c.1020-2A>G (p. R340Sfs*29). Their clinical features were characterized by intellectual disability (ID), developmental delay, abnormal facial features and the absence of early-onset seizure, which expands the phenotype spectrum associated with Skraban-Deardorff syndrome. By comparing our cases with current reported cases of WDR26-related intellectual disability, we suggest that developmental delay, particularly in speech, and facial features including rounded palpebral fissures, depressed nasal root, full nasal tip and abnormal gums, represent the prominent clinical phenotypes for diagnosis of Skraban-Deardorff syndrome. Together, WDR26 variants and 1q41q42 deletions should feature prominently on the differential diagnosis of ID with distinctive facial features.
Collapse
|
9
|
Shirley Cheng SW, Luk HM, Lo FMI. A further case of Skraban-Deardorff syndrome and review of the literature. Clin Dysmorphol 2022; 31:79-83. [PMID: 34775451 DOI: 10.1097/mcd.0000000000000403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
De Maria B, Balestrini S, Mei D, Melani F, Pellacani S, Pisano T, Rosati A, Scaturro GM, Giordano L, Cantalupo G, Fontana E, Zammarchi C, Said E, Leuzzi V, Mastrangelo M, Galosi S, Parrini E, Guerrini R. Expanding the genetic and phenotypic spectrum of CHD2-related disease: From early neurodevelopmental disorders to adult-onset epilepsy. Am J Med Genet A 2021; 188:522-533. [PMID: 34713950 DOI: 10.1002/ajmg.a.62548] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
CHD2 encodes the chromodomain helicase DNA-binding protein 2, an ATP-dependent enzyme that acts as a chromatin remodeler. CHD2 pathogenic variants have been associated with various early onset phenotypes including developmental and epileptic encephalopathy, self-limiting or pharmacoresponsive epilepsies and neurodevelopmental disorders without epilepsy. We reviewed 84 previously reported patients carrying 76 different CHD2 pathogenic or likely pathogenic variants and describe 18 unreported patients carrying 12 novel pathogenic or likely pathogenic variants, two recurrent likely pathogenic variants (in two patients each), three previously reported pathogenic variants, one gross deletion. We also describe a novel phenotype of adult-onset pharmacoresistant epilepsy, associated with a novel CHD2 missense likely pathogenic variant, located in an interdomain region. A combined review of previously published and our own observations indicates that although most patients (72.5%) carry truncating CHD2 pathogenic variants, CHD2-related phenotypes encompass a wide spectrum of conditions with developmental delay/intellectual disability (ID), including prominent language impairment, attention deficit hyperactivity disorder and autistic spectrum disorder. Epilepsy is present in 92% of patients with a median age at seizure onset of 2 years and 6 months. Generalized epilepsy types are prevalent and account for 75.5% of all epilepsies, with photosensitivity being a common feature and adult-onset nonsyndromic epilepsy a rare presentation. No clear genotype-phenotype correlation has emerged.
Collapse
Affiliation(s)
- Beatrice De Maria
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Simona Balestrini
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, and Chalfont Centre for Epilepsy, Gerrard Cross, UK
| | - Davide Mei
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Federico Melani
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Simona Pellacani
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Tiziana Pisano
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Anna Rosati
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Giusi M Scaturro
- Metabolic Diseases Unit, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Lucio Giordano
- Paediatric Neurology and Psychiatry Unit, Spedali Civili Children's Hospital, University of Brescia, Brescia, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Section, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, Verona, Italy.,Dipartimento Materno-Infantile, UOC Neuropsichiatria Infantile, Azienda Ospedaliero-Universitaria Integrata, Verona, Italy.,Center for Research on Epilepsies in Pediatric age (CREP), Verona, Italy
| | - Elena Fontana
- Child Neuropsychiatry Section, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, Verona, Italy.,Dipartimento Materno-Infantile, UOC Neuropsichiatria Infantile, Azienda Ospedaliero-Universitaria Integrata, Verona, Italy
| | - Cristina Zammarchi
- Paediatric Neurology and Psychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Edith Said
- Section of Medical Genetics, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Vincenzo Leuzzi
- Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Mario Mastrangelo
- Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Serena Galosi
- Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Elena Parrini
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Paediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Kritioti E, Theodosiou A, Parpaite T, Alexandrou A, Nicolaou N, Papaevripidou I, Séjourné N, Coste B, Christophidou-Anastasiadou V, Tanteles GA, Sismani C. Unravelling the genetic causes of multiple malformation syndromes: A whole exome sequencing study of the Cypriot population. PLoS One 2021; 16:e0253562. [PMID: 34324503 PMCID: PMC8320927 DOI: 10.1371/journal.pone.0253562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple malformation syndromes (MMS) belong to a group of genetic disorders characterised by neurodevelopmental anomalies and congenital malformations. Here we explore for the first time the genetic aetiology of MMS using whole-exome sequencing (WES) in undiagnosed patients from the Greek-Cypriot population after prior extensive diagnostics workup including karyotype and array-CGH. A total of 100 individuals (37 affected), from 32 families were recruited and family-based WES was applied to detect causative single-nucleotide variants (SNVs) and indels. A genetic diagnosis was reported for 16 MMS patients (43.2%), with 10/17 (58.8%) of the findings being novel. All autosomal dominant findings occurred de novo. Functional studies were also performed to elucidate the molecular mechanism relevant to the abnormal phenotypes, in cases where the clinical significance of the findings was unclear. The 17 variants identified in our cohort were located in 14 genes (PCNT, UBE3A, KAT6A, SPR, POMGNT1, PIEZO2, PXDN, KDM6A, PHIP, HECW2, TFAP2A, CNOT3, AGTPBP1 and GAMT). This study has highlighted the efficacy of WES through the high detection rate (43.2%) achieved for a challenging category of undiagnosed patients with MMS compared to other conventional diagnostic testing methods (10-20% for array-CGH and ~3% for G-banding karyotype analysis). As a result, family-based WES could potentially be considered as a first-tier cost effective diagnostic test for patients with MMS that facilitates better patient management, prognosis and offer accurate recurrence risks to the families.
Collapse
Affiliation(s)
- Evie Kritioti
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nayia Nicolaou
- Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nina Séjourné
- Aix Marseille Université, CNRS, LNC-UMR 7291, Marseille, France
| | - Bertrand Coste
- Aix Marseille Université, CNRS, LNC-UMR 7291, Marseille, France
| | | | - George A. Tanteles
- Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
12
|
Han JY, Park J. Variable Phenotypes of Epilepsy, Intellectual Disability, and Schizophrenia Caused by 12p13.33-p13.32 Terminal Microdeletion in a Korean Family: A Case Report and Literature Review. Genes (Basel) 2021; 12:genes12071001. [PMID: 34210021 PMCID: PMC8303811 DOI: 10.3390/genes12071001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33–p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end-phenotype, which in turn determines disease prognosis. In our case, the 12p13.33–p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-63-250-1218
| |
Collapse
|
13
|
Zhai Y, Zhang Z, Shi P, Martin DM, Kong X. Incorporation of exome-based CNV analysis makes trio-WES a more powerful tool for clinical diagnosis in neurodevelopmental disorders: A retrospective study. Hum Mutat 2021; 42:990-1004. [PMID: 34015165 DOI: 10.1002/humu.24222] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/05/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a genetically heterogeneous group of diseases, affecting 1%-3% of children. Whole-exome sequencing (WES) has been widely used as a first-tier tool for identifying genetic causes of rare diseases. Trio-WES was performed in a cohort of 74 pedigrees with NDDs. Exome-based copy number variant (CNV) calling was incorporated into the traditional single-nucleotide variant (SNV) and small insertion/deletion (Indel) analysis pipeline for WES data. An overall positive diagnostic yield of 54.05% (40/74) was obtained in the pipeline of combinational SNV/Indel and CNV analysis, including 35.13% (26/74) from SNV/Indel analysis and 18.92% (14/74) from exome-based CNV analysis, respectively. In total, SNV/Indel analysis identified 38 variants in 28 different genes, of which 24 variants were novel; exome-based CNV analysis identified 14 CNVs, including 2 duplications and 12 deletions, which ranged from 440 bp (single exon) to 16.86 Mb (large fragment) in size. In particular, a hemizygous deletion of exon 1 in the SLC16A2 gene was detected. Based on the diagnostic results, two families underwent prenatal diagnosis and had unaffected babies. The incorporation of exome-based CNV detection into conventional SNV/Indel analysis for a single trio-WES test significantly improved the diagnostic rate, making WES a more powerful, practical, and cost-effective tool in the clinical diagnosis of NDDs.
Collapse
Affiliation(s)
- Yiwen Zhai
- Center of Genetic and Prenatal Diagnosis, Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Departments of Pediatrics and Human Genetics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Zhanhui Zhang
- Department of Bioinformatics, Berry Genomics Corporation, Beijing, China
| | - Panlai Shi
- Center of Genetic and Prenatal Diagnosis, Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Donna M Martin
- Departments of Pediatrics and Human Genetics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Xiangdong Kong
- Center of Genetic and Prenatal Diagnosis, Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Fu D, Lin W, Lu F, Du S, Zhu M, Zhao X, Tang J, Chen C, Chui X, Tang S, Wang K, Yang C, Han B. A de novo 10q11.23q22.1 deletion detected by whole genome mate-pair sequencing: a case report. BMC Pediatr 2021; 21:254. [PMID: 34059004 PMCID: PMC8167982 DOI: 10.1186/s12887-021-02723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
Background Interstitial deletions of chromosome band 10q11-q22 was a genomic disorder distinguished by developmental delay, congenital cleft palate and muscular hypotonia. The phenotypes involved were heterogeneous, hinge on the variable breakpoints and size. Case presentation Here, we presented a patient with soft palate cleft, growth and development delay. The patient was a 2 years and 5 months girl who was not able to walk unless using a children’s crutches to support herself. Whole-exome sequencing (WES) and whole-genome mate-pair sequencing (WGMS) were both performed by next generation sequencing (NGS). A 20.76 Mb deletion at 10q11.23q22.1 (seq[GRCh37/hg19]del(10)(50,319,387-71,083,899) × 1) was revealed by the WGMS, which was verified as de novo by quantitative polymerase chain reaction (QPCR). Conclusion Children with 10q11-q22 deletions greater than 20 MB have never been reported before, and we are the first to report and provide a detailed clinical phenotype, which brings further knowledge of 10q11-q22 deletions.
Collapse
Affiliation(s)
- Dalin Fu
- Department of rehabilitation, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weisheng Lin
- CheerLand Precision Biomed Co., Ltd, Shenzhen, China
| | - Fen Lu
- Department of rehabilitation, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Senjie Du
- Department of rehabilitation, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of rehabilitation, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaoke Zhao
- Department of rehabilitation, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jian Tang
- Department of rehabilitation, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Chuan Chen
- CheerLand Precision Biomed Co., Ltd, Shenzhen, China
| | - Xiaoli Chui
- CheerLand Precision Biomed Co., Ltd, Shenzhen, China
| | - Shanmei Tang
- CheerLand Precision Biomed Co., Ltd, Shenzhen, China
| | - Kai Wang
- CheerLand Precision Biomed Co., Ltd, Shenzhen, China
| | | | - Bei Han
- Department of Pediatric Endocrinology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
15
|
Ding X, Huang H, Zhong L, Chen M, Peng F, Zhang B, Cui X, Yang XA. Disseminated Talaromyces marneffei Infection in a Non-HIV Infant With a Homozygous Private Variant of RELB. Front Cell Infect Microbiol 2021; 11:605589. [PMID: 33791233 PMCID: PMC8005656 DOI: 10.3389/fcimb.2021.605589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective This study presents a relatively rare case of disseminated Talaromyces marneffei (T. marneffei) infection in an HIV-negative patient. Methods An 8-month-old girl was hospitalized because of uncontrollable fever and cough for 6 days. Routine laboratory tests, biochemical detection, immunological tests, pathogenic examination, and imaging inspection were performed. Genetic tests of trio whole genome sequencing (Trio-WES), trio copy number sequencing (Trio-CNVseq), and Sanger sequencing were conducted to identify pathogenic variants. In silico analysis of the sequence alignment and structural modeling results was carried out to study the possible pathogenicity of the identified variant. Western blotting was performed to investigate the expression of the identified gene at the protein level. Results Enhanced CT and MRI scanning demonstrated thymic dysplasia, diffuse pulmonary and liver nodules, and many balloon-like air sacs in both lungs. The white blood cell count, neutrophil count, and neutrophil ratio were normal or elevated. The patient was HIV-negative and bone marrow and blood culture showed T. marneffei infection. Total lymphocyte count, CD3+ T lymphocyte count, CD3+CD4+ T lymphocyte count, CD3+CD8+ T lymphocyte count, and NK cell count decreased, while the number of CD19 positive B cells increased. However, the ratio of CD3+CD4+:CD3+CD8+ T cells increased. Trio-WES identified a homozygous private variant of NM_006509: c.400_c.401insAGC/p.Lys134 delinsLysGln in RELB and Sanger sequencing validated the result. Structural modeling indicated that the variant may be pathogenic. Reverse transcription-polymerase chain reaction and Western blot analysis showed that the expression of RelB in the patient was lower than that in the healthy controls at mRNA and protein levels. Conclusion This is the first report on disseminated T. marneffei infection in a patient with a homozygous private variant of RELB.
Collapse
Affiliation(s)
- Xiaofang Ding
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Han Huang
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Lili Zhong
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Min Chen
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Fang Peng
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Bing Zhang
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Xinyu Cui
- Department of Biochemistry, School of Basic Medical Science, Chengde Medical University, Chengde, China
| | - Xiu-An Yang
- Department of Biochemistry, School of Basic Medical Science, Chengde Medical University, Chengde, China
| |
Collapse
|
16
|
Ye XG, Liu ZG, Wang J, Dai JM, Qiao PX, Gao PM, Liao WP. YWHAG Mutations Cause Childhood Myoclonic Epilepsy and Febrile Seizures: Molecular Sub-regional Effect and Mechanism. Front Genet 2021; 12:632466. [PMID: 33767733 PMCID: PMC7985244 DOI: 10.3389/fgene.2021.632466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 01/27/2023] Open
Abstract
YWHAG, which encodes an adapter protein 14-3-3γ, is highly expressed in the brain and regulates a diverse range of cell signaling pathways. Previously, eight YWHAG mutations have been identified in patients with epileptic encephalopathy (EE). In this study, using trios-based whole exome sequencing, we identified two novel YWHAG mutations in two unrelated families with childhood myoclonic epilepsy and/or febrile seizures (FS). The identified mutations included a heterozygous truncating mutation (c.124C>T/p.Arg42Ter) and a de novo missense mutation (c.373A>G/p.Lys125Glu). The two probands experienced daily myoclonic seizures that were recorded with ictal generalized polyspike-slow waves, but became seizure-free with simple valproate treatment. The other affected individuals presented FS. The truncating mutation was identified in the family with six individuals of mild phenotype, suggesting that YWHAG mutations of haploinsufficiency are relatively less pathogenic. Analysis on all missense mutations showed that nine mutations were located within 14-3-3γ binding groove and another mutation was located at residues critical for dimerization, indicating a molecular sub-regional effect. Mutation Arg132Cys, which was identified recurrently in five patients with EE, would have the strongest influence on binding affinity. 14-3-3γ dimers supports target proteins activity. Thus, a heterozygous missense mutation would lead to majority dimers being mutants; whereas a heterozygous truncating mutation would lead to only decreasing the number of wild-type dimer, being one of the explanations for phenotypical variation. This study suggests that YWHAG is potentially a candidate pathogenic gene of childhood myoclonic epilepsy and FS. The spectrum of epilepsy caused by YWHAG mutations potentially range from mild myoclonic epilepsy and FS to severe EE.
Collapse
Affiliation(s)
- Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jie-Min Dai
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Pei-Xiu Qiao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Ping-Ming Gao
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
17
|
Pavinato L, Trajkova S, Grosso E, Giorgio E, Bruselles A, Radio FC, Pippucci T, Dimartino P, Tartaglia M, Petlichkovski A, De Rubeis S, Buxbaum J, Ferrero GB, Keller R, Brusco A. Expanding the clinical phenotype of the ultra-rare Skraban-Deardorff syndrome: Two novel individuals with WDR26 loss-of-function variants and a literature review. Am J Med Genet A 2021; 185:1712-1720. [PMID: 33675273 DOI: 10.1002/ajmg.a.62157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022]
Abstract
De novo variants in the WDR26 gene leading to haploinsufficiency have recently been associated with Skraban-Deardorff syndrome. This condition is an ultra-rare autosomal dominant neurodevelopmental disorder characterized by a broad range of clinical signs, including intellectual disability (ID), developmental delay (DD), seizures, abnormal facial features, feeding difficulties, and minor skeletal anomalies. Currently, 18 cases have been reported in the literature and for only 15 of them a clinical description is available. Here, we describe a child with Skraban-Deardorff syndrome associated with the WDR26 pathogenic de novo variant NM_025160.6:c.69dupC, p.(Gly24ArgfsTer48), and an adult associated with the pathogenic de novo variant c.1076G > A, p.(Trp359Ter). The adult patient was a 29-year-old female with detailed information on clinical history and pharmacological treatments since birth, providing an opportunity to map disease progression and patient management. By comparing our cases with published reports of Skraban-Deardorff syndrome, we provide a genetic and clinical summary of this ultrarare condition, describe the clinical management from childhood to adult age, and further expand on the clinical phenotype.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, Turin, Italy.,Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Aleksandar Petlichkovski
- Institute for Immunobiology and Human Genetics, Faculty of Medicine, University "Sv. Kiril I Metodij", Skopje, Macedonia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Roberto Keller
- Adult autism center, Mental Health Department, Local Health Unit ASL Città di Torino, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| |
Collapse
|
18
|
Lee J, Park JE, Lee C, Kim AR, Kim BJ, Park WY, Ki CS, Lee J. Genomic Analysis of Korean Patient With Microcephaly. Front Genet 2021; 11:543528. [PMID: 33584783 PMCID: PMC7876370 DOI: 10.3389/fgene.2020.543528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Microcephaly is a prevalent phenotype in patients with neurodevelopmental problems, often with genetic causes. We comprehensively investigated the clinical phenotypes and genetic background of microcephaly in 40 Korean patients. We analyzed their clinical phenotypes and radiologic images and conducted whole exome sequencing (WES) and analysis of copy number variation (CNV). Infantile hypotonia and developmental delay were present in all patients. Thirty-four patients (85%) showed primary microcephaly. The diagnostic yield from the WES and CNV analyses was 47.5%. With WES, we detected pathogenic or likely pathogenic variants that were previously associated with microcephaly in 12 patients (30%); nine of these were de novo variants with autosomal dominant inheritance. Two unrelated patients had mutations in the KMT2A gene. In 10 other patients, we found mutations in the GNB1, GNAO1, TCF4, ASXL1, SMC1A, VPS13B, ACTG1, EP300, and KMT2D genes. Seven patients (17.5%) were diagnosed with pathogenic CNVs. Korean patients with microcephaly show a genetic spectrum that is different from that of patients with microcephaly of other ethnicities. WES along with CNV analysis represents an effective approach for diagnosis of the underlying causes of microcephaly.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong Eun Park
- Department of Laboratory Medicine and Genetics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Chung Lee
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ah Reum Kim
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Sheth H, Sheth J, Pancholi D, Bhavsar R, Mannan A, Ganapathy A, Chowdhury M, Shah S, Solanki D, Sheth F. Assessing Utility of Clinical Exome Sequencing in Diagnosis of Rare Idiopathic Neurodevelopmental Disorders in Indian Population. Neurol India 2021; 69:1729-1736. [DOI: 10.4103/0028-3886.333475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Sobering AK, Li D, Beighley JS, Carey JC, Donald T, Elsea SH, Figueroa KP, Gerdts J, Hamlet A, Mirzaa GM, Nelson B, Pulst SM, Smith JL, Tassone F, Toriello HV, Walker RH, Yearwood KR, Bhoj EJ. Experiences with offering pro bono medical genetics services in the West Indies: Benefits to patients, physicians, and the community. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:1030-1041. [PMID: 33274544 PMCID: PMC8683562 DOI: 10.1002/ajmg.c.31871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
We describe our experiences with organizing pro bono medical genetics and neurology outreach programs on several different resource-limited islands in the West Indies. Due to geographic isolation, small population sizes, and socioeconomic disparities, most Caribbean islands lack medical services for managing, diagnosing, and counseling individuals with genetic disorders. From 2015 to 2019, we organized 2-3 clinics per year on various islands in the Caribbean. We also organized a week-long clinic to provide evaluations for children suspected of having autism spectrum disorder. Consultations for over 100 different individuals with suspected genetic disorders were performed in clinics or during home visits following referral by locally registered physicians. When possible, follow-up visits were attempted. When available and appropriate, clinical samples were shipped to collaborating laboratories for molecular analysis. Laboratory tests included karyotyping, cytogenomic microarray analysis, exome sequencing, triplet repeat expansion testing, blood amino acid level determination, biochemical assaying, and metabolomic profiling. We believe that significant contributions to healthcare by genetics professionals can be made even if availability is limited. Visiting geneticists may help by providing continuing medical education seminars. Clinical teaching rounds help to inform local physicians regarding the management of genetic disorders with the aim of generating awareness of genetic conditions. Even when only periodically available, a visiting geneticist may benefit affected individuals, their families, their local physicians, and the community at large.
Collapse
Affiliation(s)
- Andrew K. Sobering
- Department of Biochemistry, St. George's University School of Medicine, St. George's, Grenada
- Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer S. Beighley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - John C. Carey
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Tyhiesia Donald
- Grenada General Hospital, Pediatrics Ward, St. George's, Grenada
- Clinical Teaching Unit, St. George's University School of Medicine, St. George's, Grenada
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Andre Hamlet
- Grenada General Hospital, Pediatrics Ward, St. George's, Grenada
- Clinical Teaching Unit, St. George's University School of Medicine, St. George's, Grenada
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Beverly Nelson
- Clinical Teaching Unit, St. George's University School of Medicine, St. George's, Grenada
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Janice L. Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, California
- MIND Institute, University of California Davis Medical Center, Sacramento, California
| | - Helga V. Toriello
- Department of Pediatrics/Human Development College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Neurology, Mount Sinai School of Medicine, New York City, New York
| | | | - Elizabeth J. Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Clinical Utility of Next-Generation Sequencing for Developmental Disorders in the Rehabilitation Department: Experiences from a Single Chinese Center. J Mol Neurosci 2020; 71:845-853. [PMID: 32959227 DOI: 10.1007/s12031-020-01707-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
This study investigated the clinical and genetic characteristics of developmental disorders (DDs) in children attending a rehabilitation department. A total of 94 children with suspected rare and undiagnosed DDs were included in this study. All patients were subjected to next-generation sequencing by means of proband single whole-exome sequencing (Pro-WES) or trio whole-exome sequencing (Trio-WES). To investigate the copy number variations (CNVs), 63 patients were subjected to the trio strategy, and 17 cases were subjected to the proband single strategy. The patients developed early and suffered from severe symptoms. WES reached a high diagnostic rate (48.7%, 46/94), and de novo (48.3%, 28/58) was the main pathogenic form. Most identified single-nucleotide variations (SNVs)/small insertions and deletions (indels) were found only in one patient. The number of uncertain significant locus in the patients taking Trio-WES was significantly lower than that in patients taking Pro-WES (2.1% vs 2.8%). Compared with hereditary mutations passed from parents, pathogenicity was more obvious in de novo mutations. The diagnostic rate of WES accompanied by CNVseq (57.5%, 46/80) was significantly higher (p = 0.016) than WES alone. Next-generation sequencing exhibited a satisfactory diagnostic rate for DDs patients in the rehabilitation department. Compared with the proband-only model, the family trio strategy should be employed more frequently because it can reduce the number of uncertain significant sites and help to identify de novo pathogenic mutations.
Collapse
|
22
|
Hu X, Guo R, Guo J, Qi Z, Li W, Hao C. Parallel Tests of Whole Exome Sequencing and Copy Number Variant Sequencing Increase the Diagnosis Yields of Rare Pediatric Disorders. Front Genet 2020; 11:473. [PMID: 32595695 PMCID: PMC7300249 DOI: 10.3389/fgene.2020.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Both whole exome sequencing and copy number variants sequencing were applied to identify the genetic cause of rare pediatric disorders. In our study, we aimed to investigate the diagnostic yield of parallel tests of trio whole exome sequencing and copy number variants sequencing and its clinical utility. Methods: After collecting detailed clinical information, a total of 60 patients were referred to parallel tests of whole exome sequencing and copy number variants sequencing, which used shared initial libraries. Results: 26 pathogenic or likely pathogenic single nucleotide variants and 11 copy number variants were identified in 32 patients. 65.4% (17/26) of the SNVs were novel. The overall diagnosis rate was 53.3%. For the patients with positive results, 22 (36.7%) patients were diagnosed by whole exome sequencing and 10 (16.7%) patients were diagnosed by copy number variants sequencing. We also reviewed clinical impact on selected cases. Conclusion: We adopted an approach by performing parallel tests of trio whole exome sequencing and copy number variants sequencing with shared initial libraries. This strategy is relatively efficient and cost-effective for the diagnosis of rare pediatric disorders with high heterogeneity.
Collapse
Affiliation(s)
- Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Jun Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Henan Key Laboratory of Pediatric Inherited & Metabolic Diseases, Henan Children's Hospital, Zhengzhou Hospital of Beijing Children's Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Hu X, Liu J, Guo R, Guo J, Zhao Z, Li W, Xu B, Hao C. A novel 14q13.1-21.1 deletion identified by CNV-Seq in a patient with brain-lung-thyroid syndrome, tooth agenesis and immunodeficiency. Mol Cytogenet 2019; 12:51. [PMID: 31890031 PMCID: PMC6924084 DOI: 10.1186/s13039-019-0463-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Chromosome 14q11-q22 deletion syndrome (OMIM 613457) is a rare genomic disorder. The phenotype heterogeneity depends on the deletion size, breakpoints and genes deleted. Critical genes like FOXG1, NKX2–1, PAX9 were identified. Case presentation We performed whole exome sequencing (WES) and copy number variation sequencing (CNV-seq) for a patient with mild speech and motor developmental delay, short stature, recurrent pulmonary infections, tooth agenesis and triad of brain-lung-thyroid syndrome. By using CNV-seq, we identified a 3.1 Mb de novo interstitial deletion of the 14q13.2q21.1 region encompassing 17 OMIM genes including NKX2–1, PAX9 and NFKBIA. Our patient’s phenotype is consistent with other published 14q13 deletion patients. Conclusion Our results showed the combination of WES and CNV-seq is an effective diagnostic strategy for patients with genetic or genomic disorders. After reviewing published patients, we also proposed a new critical region for 14q13 deletion syndrome with is a more benign disorder compared to 14q11-q22 deletion syndrome.
Collapse
Affiliation(s)
- Xuyun Hu
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Jun Liu
- 2China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Ruolan Guo
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Jun Guo
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Zhipeng Zhao
- 2China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Wei Li
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Baoping Xu
- 2China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Chanjuan Hao
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| |
Collapse
|
24
|
Isik E, Onay H, Atik T, Canda E, Cogulu O, Coker M, Ozkinay F. Clinical utility of a targeted next generation sequencing panel in severe and pediatric onset Mendelian diseases. Eur J Med Genet 2019; 62:103725. [DOI: 10.1016/j.ejmg.2019.103725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/01/2019] [Accepted: 07/13/2019] [Indexed: 02/03/2023]
|
25
|
Zhang X, Wang Y, Yang F, Tang J, Xu X, Yang L, Yang XA, Wu D. Biallelic INTS1 Mutations Cause a Rare Neurodevelopmental Disorder in Two Chinese Siblings. J Mol Neurosci 2019; 70:1-8. [PMID: 31428919 DOI: 10.1007/s12031-019-01393-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
This study presents two Chinese siblings with a rare neurodevelopmental disorder (NDD) caused by biallelic INTS1 mutations and investigates the clinical features of this disease by means of in silico analysis. Two siblings, an 11-year-old brother and a 5-year-old sister, visited our hospital due to physical retardation and profound intellectual disability. Whole-exome sequencing (WES) was performed for the girl, and Sanger sequencing was used to validate the identified variants. Phenotype correlation analysis and in silico genetic interaction network analysis were performed to investigate genes that could lead to diseases similar to the rare disease in the patients. Growth retardation, distinct intellectual disability, hypertelorism, mild cataract, uneven teeth, abnormal palmar and plantar creases, and dubious genitalia were noted in the sister. No neurological features related to neuropathy were found. The brother showed features and growth delay similar to his sister. Heterozygous novel variants of c.1645A>G,p.Met549Val and c.5881C>T,p.Gln1961* in INTS1 were considered a candidate etiology. Sanger sequencing demonstrated that the variants were inherited from the grandfather and (maternal) grandmother. Phenotype correlation analysis revealed that CTDP1 mutation-induced congenital cataracts-facial dysmorphism-neuropathy (CCFDN) mostly overlapped with the performance of our patients. In silico analysis of the genetic interaction network showed that INTS1 is highly associated with INTS8 and CTDP1. Our study further validated that biallelic INTS1 mutations could bring about the onset of a novel neurodevelopmental disorder.
Collapse
Affiliation(s)
- Xuemin Zhang
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, People's Republic of China
| | - Yajian Wang
- Beijing Chigene Translational Medicine Research Center Co., Ltd., Beijing, 100875, People's Republic of China
| | - Fang Yang
- School of Basic Medical Science, Chengde Medical University, Anyuan Road, Chengde, 067000, People's Republic of China
| | - Jiulai Tang
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, People's Republic of China
| | - Xiaoyan Xu
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, People's Republic of China
| | - Li Yang
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, People's Republic of China
| | - Xiu-An Yang
- School of Basic Medical Science, Chengde Medical University, Anyuan Road, Chengde, 067000, People's Republic of China.
| | - De Wu
- The Children's Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, People's Republic of China.
| |
Collapse
|
26
|
Brunelli L, Jenkins SM, Gudgeon JM, Bleyl SB, Miller CE, Tvrdik T, Dames SA, Ostrander B, Daboub JAF, Zielinski BA, Zinkhan EK, Underhill HR, Wilson T, Bonkowsky JL, Yost CC, Botto LD, Jenkins J, Pysher TJ, Bayrak-Toydemir P, Mao R. Targeted gene panel sequencing for the rapid diagnosis of acutely ill infants. Mol Genet Genomic Med 2019; 7:e00796. [PMID: 31192527 PMCID: PMC6625092 DOI: 10.1002/mgg3.796] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background Exome/genome sequencing (ES/GS) have been recently used in neonatal and pediatric/cardiac intensive care units (NICU and PICU/CICU) to diagnose and care for acutely ill infants, but the effectiveness of targeted gene panels for these purposes remains unknown. Methods RapSeq, a newly developed panel targeting 4,503 disease‐causing genes, was employed on selected patients in our NICU/PICU/CICU. Twenty trios were sequenced from October 2015 to March 2017. We assessed diagnostic yield, turnaround times, and clinical consequences. Results A diagnosis was made in 10/20 neonates (50%); eight had de novo variants (ASXL1, CHD, FBN1, KMT2D, FANCB, FLNA, PAX3), one was a compound heterozygote for CHAT, and one had a maternally inherited GNAS variant. Preliminary reports were generated by 9.6 days (mean); final reports after Sanger sequencing at 16.3 days (mean). In all positive infants, the diagnosis changed management. In a case with congenital myasthenia, diagnosis and treatment occurred at 17 days versus 7 months in a historical control. Conclusions This study shows that a gene panel that includes the majority of known disease‐causing genes can rapidly identify a diagnosis in a large number of tested infants. Due to simpler deployment and interpretation and lower costs, this approach might represent an alternative to ES/GS in the NICU/PICU/CICU.
Collapse
Affiliation(s)
- Luca Brunelli
- University of Utah School of Medicine, Salt Lake City, Utah
| | | | | | - Steven B Bleyl
- University of Utah School of Medicine, Salt Lake City, Utah.,Genome Medical Services, San Francisco, California
| | | | | | | | | | | | | | - Erin K Zinkhan
- University of Utah School of Medicine, Salt Lake City, Utah
| | | | | | | | | | | | - Justin Jenkins
- University of Utah School of Medicine, Salt Lake City, Utah
| | - Theodore J Pysher
- University of Utah School of Medicine, Salt Lake City, Utah.,Intermountain Healthcare, Salt Lake City, Utah
| | - Pinar Bayrak-Toydemir
- University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| | - Rong Mao
- University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Laboratories, Salt Lake City, Utah
| |
Collapse
|