1
|
Goldberg JD, Pierson S, Johansen Taber K. Expanded carrier screening: What conditions should we screen for? Prenat Diagn 2023; 43:496-505. [PMID: 36624552 DOI: 10.1002/pd.6306] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Carrier screening tests reproductive couples for their risk of having children affected by serious monogenic conditions. Carrier screening has historically been offered for certain conditions in high-risk populations. However, more recent evidence has shown that offering carrier screening to all patients, regardless of their ethnicity, more effectively and equitably identifies at-risk couples. Coupled with technology that enables screening for a nearly unlimited number of conditions, this expanded carrier screening (ECS) approach is now supported by professional society guidelines. Despite recent recommendations by the American College of Medical Genetics and Genomics to screen all patients who are pregnant or considering pregnancy for 113 conditions, questions remain about what conditions should be included on a core ECS panel. Here, we briefly review the history of carrier screening and guidelines on criteria for panel design. We then suggest which of these criteria are most critical, as well as thresholds to identify which conditions meet these criteria. Based on these interpretations, we recommend a core panel of 64 conditions that would identify the vast majority of at-risk couples. Widespread adoption of a core panel such as this would result in a marked improvement in the number of patients currently receiving comprehensive carrier screening.
Collapse
|
2
|
Zhang K, Lin G, Li J. Carrier screening: An update. Clin Chim Acta 2022; 535:92-98. [PMID: 35973610 DOI: 10.1016/j.cca.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Genetic carrier screening (CS) for reproductive decision making was introduced 50 years ago. Technological advances and improvements in knowledge of the human genome makes multi-disease, pan-ethnic CS possible. Such screening will identify most individuals as carriers of at least one autosomal recessive or X-linked recessive disorder. Past experiences and best practices have provided a framework for CS. Although its clinical utilization is increasing, some challenges remain. In this study, several aspects of CS panel implementation have been addressed including how to evaluate the quantitative gene inclusion criteria, how to classify the severity of genetic conditions, how to understand clinical validity at the level of gene-disease association and variant classification, and how to minimize residual risks.
Collapse
Affiliation(s)
- Kuo Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China
| | - Guigao Lin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China.
| |
Collapse
|
3
|
Johansen Taber K, Ben-Shachar R, Torres R, Arjunan A, Muzzey D, Kaseniit KE, Goldberg J, Brown H. A guidelines-consistent carrier screening panel that supports equity across diverse populations. Genet Med 2021; 24:201-213. [PMID: 34906503 DOI: 10.1016/j.gim.2021.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The American College of Obstetricians and Gynecologists (ACOG) and the American College of Medical Genetics and Genomics (ACMG) suggest carrier screening panel design criteria intended to ensure meaningful results. This study used a data-driven approach to interpret the criteria to identify guidelines-consistent panels. METHODS Carrier frequencies in >460,000 individuals across 11 races/ethnicities were used to assess carrier frequency. Other criteria were interpreted on the basis of published data. A total of 176 conditions were then evaluated. Stringency thresholds were set as suggested by ACOG and/or ACMG or by evaluating conditions already recommended by ACOG and ACMG. RESULTS Forty and 75 conditions had carrier frequencies of ≥1 in 100 and ≥1 in 200, respectively; 175 had a well-defined phenotype; and 165 met at least 1 severity criterion and had an onset early in life. Thirty-seven conditions met conservative thresholds, including a carrier frequency of ≥1 in 100, and 74 conditions met permissive thresholds, including a carrier frequency of ≥1 in 200; thus, both were identified as guidelines-consistent panels. CONCLUSION Clear panel design criteria are needed to ensure quality and consistency among carrier screening panels. Evidence-based analyses of criteria resulted in the identification of guidelines-consistent panels of 37 and 74 conditions.
Collapse
Affiliation(s)
| | - Rotem Ben-Shachar
- Department of Clinical Development, Myriad Genetics, Inc, Salt Lake City, UT
| | - Raul Torres
- Department of Clinical Development, Myriad Genetics, Inc, Salt Lake City, UT
| | - Aishwarya Arjunan
- Department of Medical Affairs, Myriad Women's Health, Inc, South San Francisco, CA
| | - Dale Muzzey
- Department of Research and Development, Myriad Genetics, Inc, Salt Lake City, UT
| | - Kristjan E Kaseniit
- Department of Clinical Development, Myriad Genetics, Inc, Salt Lake City, UT
| | - James Goldberg
- Department of Medical Affairs, Myriad Women's Health, Inc, South San Francisco, CA
| | - Haywood Brown
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
4
|
de Wert G, van der Hout S, Goddijn M, Vassena R, Frith L, Vermeulen N, Eichenlaub-Ritter U. The ethics of preconception expanded carrier screening in patients seeking assisted reproduction. Hum Reprod Open 2021; 2021:hoaa063. [PMID: 33604456 PMCID: PMC7880037 DOI: 10.1093/hropen/hoaa063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/30/2020] [Indexed: 02/02/2023] Open
Abstract
Expanded carrier screening (ECS) entails a screening offer for carrier status for multiple recessive disorders simultaneously and allows testing of couples or individuals regardless of ancestry or geographic origin. Although universal ECS—referring to a screening offer for the general population—has generated considerable ethical debate, little attention has been given to the ethics of preconception ECS for patients applying for assisted reproduction using their own gametes. There are several reasons why it is time for a systematic reflection on this practice. Firstly, various European fertility clinics already offer preconception ECS on a routine basis, and others are considering such a screening offer. Professionals involved in assisted reproduction have indicated a need for ethical guidance for ECS. Secondly, it is expected that patients seeking assisted reproduction will be particularly interested in preconception ECS, as they are already undertaking the physical, emotional and economic burdens of such reproduction. Thirdly, an offer of preconception ECS to patients seeking assisted reproduction raises particular ethical questions that do not arise in the context of universal ECS: the professional’s involvement in the conception implies that both parental and professional responsibilities should be taken into account. This paper reflects on and provides ethical guidance for a responsible implementation of preconception ECS to patients seeking assisted reproduction using their own gametes by assessing the proportionality of such a screening offer: do the possible benefits clearly outweigh the possible harms and disadvantages? If so, for what kinds of disorders and under what conditions?
Collapse
Affiliation(s)
- Guido de Wert
- Department of Health, Ethics and Society; CAPHRI School for Public Health and Primary Care, Maastricht University; and GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Sanne van der Hout
- Department of Health, Ethics and Society; CAPHRI School for Public Health and Primary Care, Maastricht University; and GROW School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Mariëtte Goddijn
- Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Rita Vassena
- Clinica EUGIN, Carrer de Balmes 236, Barcelona 08006, Spain
| | - Lucy Frith
- Department of Public Health, Policy & Systems, Institute of Population Health, University of Liverpool, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
5
|
Balzotti M, Meng L, Muzzey D, Johansen Taber K, Beauchamp K, Curation Team MG, Curation Team BG, Mar-Heyming R, Buckley B, Moyer K. Clinical validity of expanded carrier screening: Evaluating the gene-disease relationship in more than 200 conditions. Hum Mutat 2020; 41:1365-1371. [PMID: 32383249 PMCID: PMC7496796 DOI: 10.1002/humu.24033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 01/31/2023]
Abstract
Clinical guidelines consider expanded carrier screening (ECS) to be an acceptable method of carrier screening. However, broader guideline support and payer adoption require evidence for associations between the genes on ECS panels and the conditions for which they aim to identify carriers. We applied a standardized framework for evaluation of gene‐disease association to assess the clinical validity of conditions screened by ECS panels. The Clinical Genome Resource (ClinGen) gene curation framework was used to assess genetic and experimental evidence of associations between 208 genes and conditions screened on two commercial ECS panels. Twenty‐one conditions were previously classified by ClinGen, and the remaining 187 were evaluated by curation teams at two laboratories. To ensure consistent application of the framework across the laboratories, concordance was evaluated on a subset of conditions. All 208 evaluated conditions met the evidence threshold for supporting a gene‐disease association. Furthermore, 203 of 208 (98%) achieved the strongest (“Definitive”) level of gene‐disease association. All conditions evaluated by both commercial laboratories were similarly classified. Assessment using the ClinGen standardized framework revealed strong evidence of gene‐disease association for conditions on two ECS panels. This result establishes the disease‐level clinical validity of the panels considered herein.
Collapse
Affiliation(s)
- Marie Balzotti
- Myriad Women's Health, Myriad Genetics, South San Francisco, California
| | - Linyan Meng
- Division of Clinical Genomic Interpretation, Baylor Genetics, Houston, Texas
| | - Dale Muzzey
- Myriad Women's Health, Myriad Genetics, South San Francisco, California
| | | | - Kyle Beauchamp
- Myriad Women's Health, Myriad Genetics, South San Francisco, California.,Tempus, Redwood City, California
| | | | | | - Rebecca Mar-Heyming
- Myriad Women's Health, Myriad Genetics, South San Francisco, California.,Ambry Genetics, Aliso Viejo, California
| | - Bethany Buckley
- Myriad Women's Health, Myriad Genetics, South San Francisco, California.,Invitae, San Francisco, California
| | - Krista Moyer
- Myriad Women's Health, Myriad Genetics, South San Francisco, California
| |
Collapse
|
6
|
Kaseniit KE, Collins E, Lo C, Moyer K, Mar-Heyming R, Kang HP, Muzzey D. Inter-lab concordance of variant classifications establishes clinical validity of expanded carrier screening. Clin Genet 2019; 96:236-245. [PMID: 31170325 PMCID: PMC6852020 DOI: 10.1111/cge.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 01/23/2023]
Abstract
Expanded carrier screening (ECS) panels that use next‐generation sequencing aim to identify pathogenic variants in coding and clinically relevant non‐coding regions of hundreds of genes, each associated with a serious recessive condition. ECS has established analytical validity and clinical utility, meaning that variants are accurately identified and pathogenic variants tend to alter patients' clinical management, respectively. However, the clinical validity of ECS, that is, correct discernment of whether an identified variant is indeed pathogenic, has only been shown for single conditions, not for panels. Here, we evaluate the clinical validity of a >170‐condition ECS panel by assessing concordance between >12 000 variant interpretations classified with guideline‐based criteria to their corresponding per‐variant combined classifications in ClinVar. We observe 99% concordance at the level of unique variants. A more clinically relevant frequency‐weighted analysis reveals that fewer than 1 in 500 patients are expected to receive a report with a variant that has a discordant classification. Importantly, gene‐level concordance is not diminished for rare ECS conditions, suggesting that large panels do not balloon the panel‐wide false‐positive rate. Finally, because ECS is intended to serve all reproductive‐age couples, we show that classification of novel variants is feasible and scales predictably for a large population.
Collapse
Affiliation(s)
- Kristjan E Kaseniit
- Myriad Women's Health (formerly Counsyl), South San Francisco, California.,Myriad Genetics, Salt Lake City, Utah
| | - Elizabeth Collins
- Myriad Women's Health (formerly Counsyl), South San Francisco, California
| | - Christine Lo
- Myriad Women's Health (formerly Counsyl), South San Francisco, California.,Myriad Genetics, Salt Lake City, Utah
| | - Krista Moyer
- Myriad Women's Health (formerly Counsyl), South San Francisco, California
| | | | - Hyunseok P Kang
- Myriad Women's Health (formerly Counsyl), South San Francisco, California
| | - Dale Muzzey
- Myriad Women's Health (formerly Counsyl), South San Francisco, California.,Myriad Genetics, Salt Lake City, Utah
| |
Collapse
|