1
|
Garg P, Singhal G, Pareek S, Kulkarni P, Horne D, Nath A, Salgia R, Singhal SS. Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview. Biochim Biophys Acta Rev Cancer 2024; 1880:189233. [PMID: 39638158 DOI: 10.1016/j.bbcan.2024.189233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene editing techniques have emerged as powerful tools in biomedical research, offering precise manipulation of genetic material with the potential to revolutionize cancer treatment strategies. This review provides a comprehensive overview of the current landscape of gene editing technologies, including CRISPR-Cas systems, base editing, prime editing, and synthetic gene circuits, highlighting their applications and potential in cancer therapy. It discusses the mechanisms, advantages, and limitations of each gene editing approach, emphasizing their transformative impact on targeting oncogenes, tumor suppressor genes, and drug resistance mechanisms in various cancer types. The review delves into population-level interventions and precision prevention strategies enabled by gene editing technologies, including gene drives, synthetic gene circuits, and precision prevention tools, for controlling cancer-causing genes, targeting pre-cancerous lesions, and implementing personalized preventive measures. Ethical considerations, regulatory challenges, and future directions in gene editing research for cancer treatment are also addressed. This review highlights how gene editing could revolutionize precision medicine by enhancing patient care and advancing cancer treatments with targeted, personalized methods. For these benefits to be fully realized, collaboration among researchers, doctors, regulators, and patient advocates is crucial in fighting cancer and meeting clinical needs.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Gargi Singhal
- Undergraduate Medical Sciences, S.N. Medical College Agra, Uttar Pradesh 282002, India
| | - Siddhika Pareek
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Tabibian M, Ghafouri-Fard S. CRISPR-mediated silencing of non-coding RNAs: A novel putative treatment for prostate cancer. Pathol Res Pract 2024; 264:155710. [PMID: 39515197 DOI: 10.1016/j.prp.2024.155710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Non-coding RNAs affect carcinogenic processes in diverse tissues, such as prostate. Several of these transcripts act as oncogenes driving prostate cancer. Thus, they are putative targets for treatment of this type of cancer. CRISPR/Cas9 technology has provided new tools for modulation of expression of these oncogenes in order to combat several aspects of carcinogenesis, including invasion cascades and metastasis. This review aimed to describe novel achievements in modulation of expression of non-coding RNAs using CRISPR/Cas9 technology in prostate cancer.
Collapse
Affiliation(s)
- Mobina Tabibian
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Bayat M, Nahand JS. Let's make it personal: CRISPR tools in manipulating cell death pathways for cancer treatment. Cell Biol Toxicol 2024; 40:61. [PMID: 39075259 PMCID: PMC11286699 DOI: 10.1007/s10565-024-09907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran.
| |
Collapse
|
4
|
Yang S, Im SH, Chung JY, Lee J, Lee KH, Kang YK, Chung HJ. An Antibody-CRISPR/Cas Conjugate Platform for Target-Specific Delivery and Gene Editing in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308763. [PMID: 38552157 DOI: 10.1002/advs.202308763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Indexed: 06/06/2024]
Abstract
The CRISPR/Cas system has been introduced as an innovative tool for therapy, however achieving specific delivery to the target has been a major challenge. Here, an antibody-CRISPR/Cas conjugate platform that enables specific delivery and target gene editing in HER2-positive cancer is introduced. The CRISPR/Cas system by replacing specific residues of Cas9 with an unnatural amino acid is engineered, that can be complexed with a nanocarrier and bioorthogonally functionalized with a monoclonal antibody targeting HER2. The resultant antibody-conjugated CRISPR/Cas nanocomplexes can be specifically delivered and induce gene editing in HER2-positive cancer cells in vitro. It is demonstrated that the in vivo delivery of the antibody-CRISPR/Cas nanocomplexes can effectively disrupt the plk1 gene in HER2-positive ovarian cancer, resulting in substantial suppression of tumor growth. The current study presents a useful therapeutic platform for antibody-mediated delivery of CRISPR/Cas for the treatment of various cancers and genetic diseases.
Collapse
Affiliation(s)
- Seungju Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ju Yeon Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Juhee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyung-Hun Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yoo Kyung Kang
- College of Pharmacy, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Mahmood M, Taufiq I, Mazhar S, Hafeez F, Malik K, Afzal S. Revolutionizing personalized cancer treatment: the synergy of next-generation sequencing and CRISPR/Cas9. Per Med 2024; 21:175-190. [PMID: 38708901 DOI: 10.1080/17410541.2024.2341610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
In the context of cancer heterogeneity, the synergistic action of next-generation sequencing (NGS) and CRISPR/Cas9 plays a promising role in the personalized treatment of cancer. NGS enables high-throughput genomic profiling of tumors and pinpoints specific mutations that primarily lead to cancer. Oncologists use this information obtained from NGS in the form of DNA profiling or RNA analysis to tailor precision strategies based on an individual's unique molecular signature. Furthermore, the CRISPR technique enables precise editing of cancer-specific mutations, allowing targeted gene modifications. Harnessing the potential insights of NGS and CRISPR/Cas9 heralds a remarkable frontier in cancer therapeutics with unprecedented precision, effectiveness and minimal off-target effects.
Collapse
Affiliation(s)
- Muniba Mahmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Izza Taufiq
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Sana Mazhar
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Faiqa Hafeez
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Samia Afzal
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| |
Collapse
|
6
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Begagić E, Bečulić H, Đuzić N, Džidić-Krivić A, Pugonja R, Muharemović A, Jaganjac B, Salković N, Sefo H, Pojskić M. CRISPR/Cas9-Mediated Gene Therapy for Glioblastoma: A Scoping Review. Biomedicines 2024; 12:238. [PMID: 38275409 PMCID: PMC10813360 DOI: 10.3390/biomedicines12010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This scoping review examines the use of CRISPR/Cas9 gene editing in glioblastoma (GBM), a predominant and aggressive brain tumor. Categorizing gene targets into distinct groups, this review explores their roles in cell cycle regulation, microenvironmental dynamics, interphase processes, and therapy resistance reduction. The complexity of CRISPR-Cas9 applications in GBM research is highlighted, providing unique insights into apoptosis, cell proliferation, and immune responses within the tumor microenvironment. The studies challenge conventional perspectives on specific genes, emphasizing the potential therapeutic implications of manipulating key molecular players in cell cycle dynamics. Exploring CRISPR/Cas9 gene therapy in GBMs yields significant insights into the regulation of cellular processes, spanning cell interphase, renewal, and migration. Researchers, by precisely targeting specific genes, uncover the molecular orchestration governing cell proliferation, growth, and differentiation during critical phases of the cell cycle. The findings underscore the potential of CRISPR/Cas9 technology in unraveling the complex dynamics of the GBM microenvironment, offering promising avenues for targeted therapies to curb GBM growth. This review also outlines studies addressing therapy resistance in GBM, employing CRISPR/Cas9 to target genes associated with chemotherapy resistance, showcasing its transformative potential in effective GBM treatments.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Nermin Đuzić
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Ragib Pugonja
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Asja Muharemović
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Naida Salković
- Department of General Medicine, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina;
| | - Haso Sefo
- Clinic of Neurosurgery, University Clinical Center Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany;
| |
Collapse
|
8
|
Sahranavard T, Mehrabadi S, Pourali G, Maftooh M, Akbarzade H, Hassanian SM, Mobarhan MG, Ferns GA, Khazaei M, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer. Curr Med Chem 2024; 31:5768-5778. [PMID: 37724673 DOI: 10.2174/0929867331666230915103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
9
|
Narkhede M, Pardeshi A, Bhagat R, Dharme G. Review on Emerging Therapeutic Strategies for Managing Cardiovascular Disease. Curr Cardiol Rev 2024; 20:e160424228949. [PMID: 38629366 PMCID: PMC11327830 DOI: 10.2174/011573403x299265240405080030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular disease (CVD) remains a foremost global health concern, necessitating ongoing exploration of innovative therapeutic strategies. This review surveys the latest developments in cardiovascular therapeutics, offering a comprehensive overview of emerging approaches poised to transform disease management. The examination begins by elucidating the current epidemiological landscape of CVD and the economic challenges it poses to healthcare systems. It proceeds to scrutinize the limitations of traditional therapies, emphasizing the need for progressive interventions. The core focus is on novel pharmacological interventions, including advancements in drug development, targeted therapies, and repurposing existing medications. The burgeoning field of gene therapy and its potential in addressing genetic predispositions to cardiovascular disorders are explored, alongside the integration of artificial intelligence and machine learning in risk assessment and treatment optimization. Non-pharmacological interventions take center stage, with an exploration of digital health technologies, wearable devices, and telemedicine as transformative tools in CVD management. Regenerative medicine and stem cell therapies, offering promises of tissue repair and functional recovery, are investigated for their potential impact on cardiac health. This review also delves into the interplay of lifestyle modifications, diet, exercise, and behavioral changes, emphasizing their pivotal role in cardiovascular health and disease prevention. As precision medicine gains prominence, this synthesis of emerging therapeutic modalities aims to guide clinicians and researchers in navigating the dynamic landscape of cardiovascular disease management, fostering a collective effort to alleviate the global burden of CVD and promote a healthier future.
Collapse
Affiliation(s)
- Minal Narkhede
- SMBT College of Pharmacy, Nandi Hills Dhamangaon Taluka Igatpuri, Nashik 422403, India
| | - Avinash Pardeshi
- SMBT College of Pharmacy, Nandi Hills Dhamangaon Taluka Igatpuri, Nashik 422403, India
| | - Rahul Bhagat
- SMBT College of Pharmacy, Nandi Hills Dhamangaon Taluka Igatpuri, Nashik 422403, India
| | - Gajanan Dharme
- SMBT College of Pharmacy, Nandi Hills Dhamangaon Taluka Igatpuri, Nashik 422403, India
| |
Collapse
|
10
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
11
|
Zhai Y, Yang L, Zheng W, Wang Q, Zhu Z, Han F, Hao Y, Ma S, Cheng G. A precise design strategy for a cell-derived extracellular matrix based on CRISPR/Cas9 for regulating neural stem cell function. Biomater Sci 2023; 11:6537-6544. [PMID: 37593879 DOI: 10.1039/d2bm01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The extracellular matrix (ECM) is a natural microenvironment pivotal for stem cell survival, as well as proliferation, differentiation and metastasis, composed of a variety of biological molecular complexes secreted by resident cells in tissues and organs. Heparan sulfate proteoglycan (HSPG) is a type of ECM protein that contains one or more covalently attached heparan sulfate chains. Heparan sulphate chains have high affinity with growth factors, chemokines and morphogens, acting as cytokine-binding domains of great importance in development and normal physiology. Herein, we constructed endogenous HSPG2 overexpression in mouse embryonic fibroblasts based on the CRISPR/Cas9 synergistic activation mediator system and then fabricated a cell-derived HSPG2 functional ECM (ECMHSPG2). The ECMHSPG2 is capable of enriching basic fibroblast growth factor (bFGF), which binds more strongly than the negative control ECM. With a growing bFGF concentration, ECMHSPG2 could better maintain neural stem cell (NSCs) stemness and promote NSC proliferation and differentiation in culture. These findings provide a precise design strategy for producing a specific cell-derived ECM for biomaterials in research and regenerative medicine.
Collapse
Affiliation(s)
- Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Lingyan Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Zhanchi Zhu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Fang Han
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, Jiangsu 215123, China.
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics. Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China.
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| |
Collapse
|
12
|
Cirillo F, Talia M, Santolla MF, Pellegrino M, Scordamaglia D, Spinelli A, De Rosis S, Giordano F, Muglia L, Zicarelli A, Di Dio M, Rigiracciolo DC, Miglietta AM, Filippelli G, De Francesco EM, Belfiore A, Lappano R, Maggiolini M. GPER deletion triggers inhibitory effects in triple negative breast cancer (TNBC) cells through the JNK/c-Jun/p53/Noxa transduction pathway. Cell Death Discov 2023; 9:353. [PMID: 37749101 PMCID: PMC10520078 DOI: 10.1038/s41420-023-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Damiano Cosimo Rigiracciolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
13
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM, Cao YB, Zhang LC, Li L. Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 2023. [PMID: 36645225 DOI: 10.1002/cam4.5594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy with high morbidity and fatality. Chemotherapy, as traditional therapy for CRC, has exerted well antitumor effect and greatly improved the survival of CRC patients. Nevertheless, chemoresistance is one of the major problems during chemotherapy for CRC and significantly limits the efficacy of the treatment and influences the prognosis of patients. To overcome chemoresistance in CRC, many strategies are being investigated. Here, we review the common and novel measures to combat the resistance, including drug repurposing (nonsteroidal anti-inflammatory drugs, metformin, dichloroacetate, enalapril, ivermectin, bazedoxifene, melatonin, and S-adenosylmethionine), gene therapy (ribozymes, RNAi, CRISPR/Cas9, epigenetic therapy, antisense oligonucleotides, and noncoding RNAs), protein inhibitor (EFGR inhibitor, S1PR2 inhibitor, and DNA methyltransferase inhibitor), natural herbal compounds (polyphenols, terpenoids, quinones, alkaloids, and sterols), new drug delivery system (nanocarriers, liposomes, exosomes, and hydrogels), and combination therapy. These common or novel strategies for the reversal of chemoresistance promise to improve the treatment of CRC.
Collapse
Affiliation(s)
- Shu-Chang Ma
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Hua Yan
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ming-Xing Miao
- Department of Physiology and Pharmacology, China Pharmaceutic University, Nanjing, China
| | - Ye-Min Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023; 8:36. [PMID: 36646687 PMCID: PMC9841506 DOI: 10.1038/s41392-023-01309-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research. Pathological and physiological changes resulting from disease onset are expected to serve as identifying factors for targeted delivery or targets for gene editing. Diseases are both varied and complex, and the choice of appropriate gene-editing methods and delivery vectors for different diseases is important. Meanwhile, there are still many potential challenges identified when targeting delivery of CRISPR/Cas9 technology for disease treatment. This paper reviews the current developments in three aspects, namely, gene-editing type, delivery vector, and disease characteristics. Additionally, this paper summarizes successful examples of clinical trials and finally describes possible problems associated with current CRISPR applications.
Collapse
Affiliation(s)
- Tianxiang Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Yanyan Yang
- grid.410645.20000 0001 0455 0905Department of Immunology, School of Basic Medicine, Qingdao University, 266021 Qingdao, People’s Republic of China
| | - Hongzhao Qi
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Weigang Cui
- grid.452710.5Department of Cardiology, People’s Hospital of Rizhao, No. 126 Taian Road, 276827 Rizhao, People’s Republic of China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, 276000 Linyi, People’s Republic of China
| | - Xiuxiu Fu
- grid.412521.10000 0004 1769 1119Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000 Qingdao, People’s Republic of China
| | - Xiangqin He
- grid.412521.10000 0004 1769 1119Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000 Qingdao, People’s Republic of China
| | - Meixin Liu
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Pei-feng Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021 Qingdao, People’s Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, Qingdao, People's Republic of China. .,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, Qingdao, People's Republic of China.
| |
Collapse
|
15
|
Ahmadi-Balootaki S, Doosti A, Jafarinia M, Goodarzi HR. Targeting the MALAT1 gene with the CRISPR/Cas9 technique in prostate cancer. Genes Environ 2022; 44:22. [PMID: 36163080 PMCID: PMC9511773 DOI: 10.1186/s41021-022-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The MALAT1 lncRNA acts as an oncogene in Prostate cancer (PC); thus, it can be severe as a cancer biomarker. METHODS Using bioinformatics datasets including (HTSeq-Counts, GDC, and TCGA) 5501 gene expression profiling specimens were gathered. Then, expression profiles and sample survival of lncRNA were investigated using COX regression analyses, ROC curve analysis. The Database for Annotation, Visualization, and Integrated Discovery was used to conduct GO and KEGG studies on the lncRNA-related PCGs. After MALAT1 Knockout via CRISPR/Cas9 technique, the MALAT1 expression was assessed in DU-145 cells. The deletion of the target fragment was examined by polymerase chain reaction (PCR). Also, the expression of apoptosis genes was investigated by qRT-PCR. The viability and cell proliferation were measured using the MTT assay. Cell migration capability was determined using the cell scratch assay. The results of qRT-PCR were assessed by the ΔΔCt method, and finally, statistical analysis was performed in SPSS software. RESULTS A maximum of 451 lncRNAs were discovered to reflect different expressions between PC and non-carcinoma tissue samples, with 307 being upregulated and 144 being down-regulated. Thirty-six lncRNAs related to OS were carefully selected, which were then subjected to stepwise multivariate Cox regression analysis, with 2 lncRNAs (MALAT1, HOXB-AS3). MALAT1 is highly expressed in PC cells. MALAT1 Knockout in DU-145 cells increases apoptosis and prevents proliferation and migration, and DU-145 transfected cells were unable to migrate based on the scratch recovery test. Overall, data suggest that MALAT1 overexpression in PC helps metastasis and tumorigenesis. Also, MALAT1 knockout can be considered a therapeutic and diagnostic target in PC. CONCLUSION Targeting MALAT1 by CRISPR/Cas9 technique inhibit the cell proliferation and migration, and in addition induce apoptosis. Thus, MALAT1 can act as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Hamed Reza Goodarzi
- Department of Genetic, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
16
|
Mir TUG, Wani AK, Akhtar N, Shukla S. CRISPR/Cas9: Regulations and challenges for law enforcement to combat its dual-use. Forensic Sci Int 2022; 334:111274. [DOI: 10.1016/j.forsciint.2022.111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
|
17
|
Cai J, Wu D, Jin Y, Bao S. Effect of CMB Carrying PTX and CRISPR/Cas9 on Endometrial Cancer Naked Mouse Model. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7119195. [PMID: 35368966 PMCID: PMC8975627 DOI: 10.1155/2022/7119195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Endometrial cancer, one of the most common gynecological cancers in women. Patients with advanced or recurrent disease have poor long-term outcomes. The current experiment explore the roles of cationic microbubbles (CMBs) carrying paclitaxel (PTX) and CRISPR/Cas9 plasmids on the xenotransplantation model of mice with endometrial cancer. The tumor histology, tumor cell viability, cell cycle, and invasion ability were investigated. Meanwhile, the P27, P21, GSK-3, Bcl-2 associated death promoter (Bad), mammalian target of rapamycin (mTOR), and C-erbB-2 expressions were evaluated by qRT-PCR and western blotting, respectively. CMB-PTX-CRISPR/Cas9 had an inhibitory action on the tumor growth, tumor cell viability, cell cycle, and invasion ability of the mouse xenograft model of endometrial cancer. The CMB-PTX-CRISPR/Cas9 increased the GSK-3, P21, P27, and Bad expression levels, while reduced the C-erbB-2 and mTOR expressions. CMBs loaded with both PTX and CRISPR/Cas9 plasmids may be a new combination treatment with much potential. CMB-PTX-CRISPR/Cas9 may regulate the tumor cell viability, invasion, and metastasis of endometrial cancer naked mouse model by upregulating expressions of GSK-3, P21, P27, and Bad.
Collapse
Affiliation(s)
- Junhong Cai
- Central Laboratory, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Dongcai Wu
- Department of Gynecology and Obstetrics, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Yanbin Jin
- Department of Gynecology and Obstetrics, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Shan Bao
- Department of Gynecology and Obstetrics, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| |
Collapse
|
18
|
Selvakumar SC, Preethi KA, Ross K, Tusubira D, Khan MWA, Mani P, Rao TN, Sekar D. CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Mol Cancer 2022; 21:83. [PMID: 35331236 PMCID: PMC8944095 DOI: 10.1186/s12943-022-01565-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is caused by a combination of genetic and epigenetic abnormalities. Current cancer therapies are limited due to the complexity of their mechanism, underlining the need for alternative therapeutic approaches. Interestingly, combining the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system with next-generation sequencing (NGS) has the potential to speed up the identification, validation, and targeting of high-value targets. Main text Personalized or precision medicine combines genetic information with phenotypic and environmental characteristics to produce healthcare tailored to the individual and eliminates the constraints of “one-size-fits-all” therapy. Precision medicine is now possible thanks to cancer genome sequencing. Having advantages over limited sample requirements and the recent development of biomarkers have made the use of NGS a major leap in personalized medicine. Tumor and cell-free DNA profiling using NGS, proteome and RNA analyses, and a better understanding of immunological systems, are all helping to improve cancer treatment choices. Finally, direct targeting of tumor genes in cancer cells with CRISPR/Cas9 may be achievable, allowing for eliminating genetic changes that lead to tumor growth and metastatic capability. Conclusion With NGS and CRISPR/Cas9, the goal is no longer to match the treatment for the diagnosed tumor but rather to build a treatment method that fits the tumor exactly. Hence, in this review, we have discussed the potential role of CRISPR/Cas9 and NGS in advancing personalized medicine.
Collapse
Affiliation(s)
- Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Panagal Mani
- Department of Biotechnology, Annai College of Arts and Science, Kumbakonam, Tamilnadu, India
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, Andhra Pradesh, 521001, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
19
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
20
|
Fierro J, DiPasquale J, Perez J, Chin B, Chokpapone Y, Tran AM, Holden A, Factoriza C, Sivagnanakumar N, Aguilar R, Mazal S, Lopez M, Dou H. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Sci Rep 2022; 12:2417. [PMID: 35165339 PMCID: PMC8844083 DOI: 10.1038/s41598-022-06430-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a key role in glioblastoma multiforme (GBM) immunosuppression, vitality, proliferation, and migration, and is therefore a promising target for treating GBM. CRISPR/Cas9-mediated genomic editing can delete both cell surface and intracellular PD-L1. This systemic deliverable genomic PD-L1 deletion system can be used as an effective anti-GBM therapy by inhibiting tumor growth and migration, and overcoming immunosuppression. To target PD-L1 for CRISPR/Cas9 gene editing, we first identified two single guide RNA (sgRNA) sequences located on PD-L1 exon 3. The first sgRNA recognizes the forward strand of human PD-L1 near the beginning of exon 3 that allows editing by Cas9 at approximately base pair 82 (g82). The second sgRNA recognizes the forward strand of exon 3 that directs cutting at base pair 165 (g165). A homology-directed repair template (HDR) combined with the dual-sgRNAs was used to improve PD-L1 knockout specificity and efficiency. sgRNAs g82 and g165 were cloned into the multiplex CRISPR/Cas9 assembly system and co-transfected with the HDR template in human U87 GBM cells (g82/165 + HDR). T7E1 analysis suggests that the dual-sgRNA CRISPR/Cas9 strategy with a repair template was capable of editing the genomic level of PD-L1. This was further confirmed by examining PD-L1 protein levels by western blot and immunofluorescence assays. Western blot analysis showed that the dual-sgRNAs with the repair template caused a 64% reduction of PD-L1 protein levels in U87 cells, while immunostaining showed a significant reduction of intracellular PD-L1. PD-L1 deletion inhibited proliferation, growth, invasion and migration of U87 cells, indicating intracellular PD-L1 is necessary for tumor progression. Importantly, U87 cells treated with g82/165 + HDR polarized tumor-associated macrophages (TAM) toward an M1 phenotype, as indicated by an increase in TNF-α and a decrease in IL-4 secretions. This was further confirmed with flow cytometry that showed an increase in the M1 markers Ly6C + and CD80 +, and a decrease in the M2 marker CD206 + both in vitro and in vivo. Utilizing dual-sgRNAs and an HDR template with the CRISPR/Cas9 gene-editing system is a promising avenue for the treatment of GBM.
Collapse
Affiliation(s)
- Javier Fierro
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Jake DiPasquale
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Joshua Perez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Brandon Chin
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Yathip Chokpapone
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - An M Tran
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Arabella Holden
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Chris Factoriza
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Nikhi Sivagnanakumar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Rocio Aguilar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sarah Mazal
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Melissa Lopez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA.
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA.
| |
Collapse
|
21
|
Lu HJ, Li J, Yang G, Yi CJ, Zhang D, Yu F, Ma Z. Circular RNAs in stem cells: from basic research to clinical implications. Biosci Rep 2022; 42:BSR20212510. [PMID: 34908111 PMCID: PMC8738868 DOI: 10.1042/bsr20212510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs with a wide variety of pathophysiological functions via diverse mechanisms, including transcription, microRNA (miRNA) sponge, protein sponge/decoy, and translation. Stem cells are pluripotent cells with unique properties of self-renewal and differentiation. Dysregulated circRNAs identified in various stem cell types can affect stem cell self-renewal and differentiation potential by manipulating stemness. However, the emerging roles of circRNAs in stem cells remain largely unknown. This review summarizes the major functions and mechanisms of action of circRNAs in stem cell biology and disease progression. We also highlight circRNA-mediated common pathways in diverse stem cell types and discuss their diagnostic significance with respect to stem cell-based therapy.
Collapse
Affiliation(s)
- Hui-Juan Lu
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei 438000, China
| | - Cun-Jian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, China
| | - Daping Zhang
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Fenggang Yu
- Institute of Life Science, Yinfeng Biological Group, Jinan 250000, China
| | - Zhaowu Ma
- The First Affiliated Hospital of Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
- School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| |
Collapse
|
22
|
Dholariya S, Parchwani D, Radadiya M, Singh RD, Sonagra A, Patel D, Sharma G. CRISPR/Cas9: A Molecular Tool for Ovarian Cancer Management beyond Gene Editing. Crit Rev Oncog 2022; 27:1-22. [PMID: 37199299 DOI: 10.1615/critrevoncog.2022043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ovarian cancer manifests with early metastases and has an adverse outcome, impacting the health of women globally. Currently, this malignancy is often treated with cytoreductive surgery and platinum-based chemotherapy. This treatment option has a limited success rate due to tumor recurrence and chemoresistance. Consequently, the fundamental objective of ovarian cancer treatment is the development of novel treatment approaches. As a new robust tool, the CRISPR/Cas9 gene-editing system has shown immense promise in elucidating the molecular basis of all the facets of ovarian cancer. Due to the precise gene editing capabilities of CRISPR-Cas9, researchers have been able to conduct a more comprehensive investigation of the genesis of ovarian cancer. This gained knowledge can be translated into the development of novel diagnostic approaches and newer therapeutic targets for this dreadful malignancy. There is encouraging preclinical evidence that suggests that CRISPR/Cas9 is a powerful versatile tool for selectively targeting cancer cells and inhibiting tumor growth, establishing new signaling pathways involved in carcinogenesis, and verifying biomolecules as druggable targets. In this review, we analyzed the current research and progress made using CRISPR/Cas9-based engineering strategies in the diagnosis and treatment, as well as the challenges in bringing this method to clinics. This comprehensive analysis will lay the basis for subsequent research in the future for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Madhuri Radadiya
- Department of Radiology, Pandit Dindayal Upadhyay (PDU) Medical College, Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | - Gaurav Sharma
- Department of Physiology, AIIMS, Rajkot, Gujarat, India
| |
Collapse
|
23
|
Chavez-Granados PA, Manisekaran R, Acosta-Torres LS, Garcia-Contreras R. CRISPR/Cas gene-editing technology and its advances in dentistry. Biochimie 2021; 194:96-107. [PMID: 34974144 DOI: 10.1016/j.biochi.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]
Abstract
A recent discovery of revolutionary Clustered regularly interspaced palindromic repeats (CRISPR) is a gene-editing tool that provides a type of adaptive immunity in prokaryotic organisms, which is currently used as a revolutionizing tool in biomedical research. It has a mechanism of correcting genome errors, turning on/off genes in cells and organisms. Most importantly playing a crucial function in bacterial defence by identifying and destroying Deoxyribonucleic acid (DNA) segments during bacteriophage invasions since the CRISPR-associated protein 9 (Cas9) enzyme recognizes and cleaves invasive DNA sequences complementary to CRISPR. Therefore, researchers employ this biological device to manipulate the genes to develop new therapies to combat systemic diseases. Currently, the most significant advance at the laboratory level is the generation of cell and animal models, functional genomic screens, live images of the cell genome, and defective DNA repairs to find the cure for genetic disorders. Even though this technology has enormous biomedical applications in various sectors, this review will summarize CRISPR/Cas emphasizing both the therapeutic and diagnostic mechanisms developed in the field of dentistry and the promising attempts to transfer this technology to clinical application. Finally, future developments are also described, which proposes to use CRISPR/Cas systems for prospective clinical dentistry applications.
Collapse
Affiliation(s)
- Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico.
| |
Collapse
|
24
|
Lei Z, Teng Q, Wu Z, Ping F, Song P, Wurpel JN, Chen Z. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm (Beijing) 2021; 2:765-777. [PMID: 34977876 PMCID: PMC8706751 DOI: 10.1002/mco2.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) has been extensively reported in colorectal cancer patients, which remains a major cause of chemotherapy failure. One of the critical mechanisms of MDR in colorectal cancer is the reduced intracellular drug level led by the upregulated expression of the ATP-binding cassette (ABC) transporters, particularly, ABCB1/P-gp. In this study, the CRISPR/Cas9 system was utilized to target ABCB1 in MDR colorectal cancer SW620/Ad300 cell line with ABCB1 overexpression. The results showed that stable knockout of ABCB1 gene by the CRISPR/Cas9 system was achieved in the MDR cancer cells. Reversal of MDR against ABCB1 chemotherapeutic drugs increased intracellular accumulation of [3H]-paclitaxel accumulation, and decreased drug efflux activity was observed in MDR SW620/Ad300 cells after ABCB1 gene knockout. Further tests using the 3D multicellular tumor spheroid model suggested that deficiency in ABCB1 restrained tumor spheroid growth and restore sensitivity to paclitaxel in MDR tumor spheroids. Overall, the CRISPR/Cas9 system targeting the ABCB1 gene can be an effective approach to overcome ABCB1-mediated MDR in colorectal cancer SW620/Ad300 cells.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Feng‐Feng Ping
- Department of Reproductive MedicineWuxi People's Hospital Affiliated to Nanjing Medical UniversityWu‐xiJiangsuP.R. China
| | - Peng Song
- Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM in Gansu ProvinceAffiliated Hospital of Gansu University of Chinese MedicineLanzhouP.R. China
| | - John N.D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
25
|
Ebrahimi N, Nasr Esfahani A, Samizade S, Mansouri A, Ghanaatian M, Adelian S, Shadman Manesh V, Hamblin MR. The potential application of organoids in breast cancer research and treatment. Hum Genet 2021; 141:193-208. [PMID: 34713317 DOI: 10.1007/s00439-021-02390-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022]
Abstract
Tumor heterogeneity is a major challenge for breast cancer researchers who have struggled to find effective treatments despite recent advances in oncology. Although the use of 2D cell culture methods in breast cancer research has been effective, it cannot model the heterogeneity of breast cancer as found within the body. The development of 3D culture of tumor cells and breast cancer organoids has provided a new approach in breast cancer research, allowing the identification of biomarkers, study of the interaction of tumor cells with the microenvironment, and for drug screening and discovery. In addition, the possibility of gene editing in organoids, especially using the CRISPR/Cas9 system, is convenient, and has allowed a more detailed study of tumor behavior in models closer to the physiological condition. The present review covers the application of organoids in breast cancer research. The recent use of gene-editing systems to provide insights into therapeutic approaches for breast cancer, is highlighted. The study of organoids and the possibility of gene manipulation may be a step towards the personalized treatment of breast cancer, which has so far remained unattainable due to the high heterogeneity of breast cancer.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of Cell, Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and Molecular Biology, School of Biological Sciences, Islamic Azad University of Falavarjan, Falavarjan, Iran
| | - Setare Samizade
- Department of Cellular and Molecular Biology, School of Biological Sciences, Islamic Azad University of Falavarjan, Falavarjan, Iran
| | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Jahrom, Fars, Iran
| | - Samaneh Adelian
- Department of Genetics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vida Shadman Manesh
- Medical Engineering Tissue Engineering, Department of Medical Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Michael R Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa.
| |
Collapse
|
26
|
Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, Liu X, Lv Z, Yang P, Xu W, Gao W, Wu Y. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20:126. [PMID: 34598686 PMCID: PMC8484294 DOI: 10.1186/s12943-021-01431-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
The 2020 Nobel Prize in Chemistry was awarded to Emmanuelle Charpentier and Jennifer Doudna for the development of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology that provided new tools for precise gene editing. It is possible to target any genomic locus virtually using only a complex nuclease protein with short RNA as a site-specific endonuclease. Since cancer is caused by genomic changes in tumor cells, CRISPR/Cas9 can be used in the field of cancer research to edit genomes for exploration of the mechanisms of tumorigenesis and development. In recent years, the CRISPR/Cas9 system has been increasingly used in cancer research and treatment and remarkable results have been achieved. In this review, we introduced the mechanism and development of the CRISPR/Cas9-based gene editing system. Furthermore, we summarized current applications of this technique for basic research, diagnosis and therapy of cancer. Moreover, the potential applications of CRISPR/Cas9 in new emerging hotspots of oncology research were discussed, and the challenges and future directions were highlighted.
Collapse
Affiliation(s)
- Huimin Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunhong Qin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Wenjie Chen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Xianfang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China
| | - Pingchang Yang
- Research Center of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, 518055, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, Shandong, China.
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Department of Cell biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
27
|
Sun J, Wang J, Zheng D, Hu X. Advances in therapeutic application of CRISPR-Cas9. Brief Funct Genomics 2021; 19:164-174. [PMID: 31769791 DOI: 10.1093/bfgp/elz031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/04/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.
Collapse
Affiliation(s)
- Jinyu Sun
- Sparkfire Scientific Research Group, Nanjing Medical University, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Road, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Donghui Zheng
- Department of Nephrology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
28
|
Piergentili R, Del Rio A, Signore F, Umani Ronchi F, Marinelli E, Zaami S. CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues. Cells 2021; 10:cells10050969. [PMID: 33919194 PMCID: PMC8143109 DOI: 10.3390/cells10050969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The CRISPR-Cas system is a powerful tool for in vivo editing the genome of most organisms, including man. During the years this technique has been applied in several fields, such as agriculture for crop upgrade and breeding including the creation of allergy-free foods, for eradicating pests, for the improvement of animal breeds, in the industry of bio-fuels and it can even be used as a basis for a cell-based recording apparatus. Possible applications in human health include the making of new medicines through the creation of genetically modified organisms, the treatment of viral infections, the control of pathogens, applications in clinical diagnostics and the cure of human genetic diseases, either caused by somatic (e.g., cancer) or inherited (mendelian disorders) mutations. One of the most divisive, possible uses of this system is the modification of human embryos, for the purpose of preventing or curing a human being before birth. However, the technology in this field is evolving faster than regulations and several concerns are raised by its enormous yet controversial potential. In this scenario, appropriate laws need to be issued and ethical guidelines must be developed, in order to properly assess advantages as well as risks of this approach. In this review, we summarize the potential of these genome editing techniques and their applications in human embryo treatment. We will analyze CRISPR-Cas limitations and the possible genome damage caused in the treated embryo. Finally, we will discuss how all this impacts the law, ethics and common sense.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Alessandro Del Rio
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
- Correspondence: or
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Federica Umani Ronchi
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| | - Enrico Marinelli
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.U.R.); (E.M.); (S.Z.)
| |
Collapse
|
29
|
Dholakia J, Scalise C, Arend RC. Assessing Preclinical Research Models for Immunotherapy for Gynecologic Malignancies. Cancers (Basel) 2021; 13:1694. [PMID: 33918476 PMCID: PMC8038292 DOI: 10.3390/cancers13071694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Gynecologic malignancies are increasing in incidence, with a plateau in clinical outcomes necessitating novel treatment options. Immunotherapy and modulation of the tumor microenvironment are rapidly developing fields of interest in gynecologic oncology translational research; examples include the PD-1 (programmed cell death 1) and CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) axes and the Wnt pathway. However, clinical successes with these agents have been modest and lag behind immunotherapy successes in other malignancies. A thorough contextualization of preclinical models utilized in gynecologic oncology immunotherapy research is necessary in order to effectively and efficiently develop translational medicine. These include murine models, in vitro assays, and three-dimensional human-tissue-based systems. Here, we provide a comprehensive review of preclinical models for immunotherapy in gynecologic malignancies, including benefits and limitations of each, in order to inform study design and translational research models. Improved model design and implementation will optimize preclinical research efficiency and increase the translational value to positive findings, facilitating novel treatments that improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Rebecca C. Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.D.); (C.S.)
| |
Collapse
|
30
|
Daisy PS, Shreyas KS, Anitha TS. Will CRISPR-Cas9 Have Cards to Play Against Cancer? An Update on its Applications. Mol Biotechnol 2021; 63:93-108. [PMID: 33386579 PMCID: PMC7775740 DOI: 10.1007/s12033-020-00289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Genome editing employs targeted nucleases as powerful tools to precisely alter the genome of target cells and regulate functional genes. Various strategies have been risen so far as the molecular scissors-mediated genome editing that includes zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-CRISPR-related protein 9. These tools allow researchers to understand the basics of manipulating the genome, create animal models to study human diseases, understand host-pathogen interactions and design disease targets. Targeted genome modification utilizing RNA-guided nucleases are of recent curiosity, as it is a fast and effective strategy that enables the researchers to manipulate the gene of interest, carry out functional studies, understand the molecular basis of the disease and design targeted therapies. CRISPR-Cas9, a bacterial defense system employed against viruses, consists of a single-strand RNA-guided Cas9 nuclease connected to the corresponding complementary target sequence. This powerful and versatile tool has gained tremendous attention among the researchers, owing to its ability to correct genetic disorders. To help illustrate the potential of this gene editor in unexplored corners of oncology, we describe the history of CRISPR-Cas9, its rapid progression in cancer research as well as future perspectives.
Collapse
Affiliation(s)
- Precilla S Daisy
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - Kuduvalli S Shreyas
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India
| | - T S Anitha
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed To-Be University), Mahatma Gandhi Medical College and Research Institute Campus, Pillaiyarkuppam, Puducherry, 607403, India.
| |
Collapse
|
31
|
Nanomaterials for Protein Delivery in Anticancer Applications. Pharmaceutics 2021; 13:pharmaceutics13020155. [PMID: 33503889 PMCID: PMC7910976 DOI: 10.3390/pharmaceutics13020155] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments.
Collapse
|
32
|
Rivera-Torres N, Banas K, Kmiec EB. Modeling pediatric AML FLT3 mutations using CRISPR/Cas12a- mediated gene editing. Leuk Lymphoma 2020; 61:3078-3088. [PMID: 32815753 PMCID: PMC8822598 DOI: 10.1080/10428194.2020.1805740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR) with the associated (Cas) nuclease complexes have democratized genetic engineering through their precision and ease-of-use. We have applied a variation of this technology, known as CRISPR-directed mutagenesis (CDM), to reconstruct genetic profiles within the FLT3 gene of AML patients. We took advantage of the versatility of CDM and built expression vectors that, in combination with a specifically designed donor DNA fragment, recapitulate simple and complex mutations within the FLT3 gene. We generate insertions and point mutations including combinations of these mutations originating from individual patient samples. We then analyze how these complex genetic profiles modulate transformation of Ba/F3 cells. Our results show that FLT3 expression plasmids bearing patient-specific single or multiple mutations recapitulate cellular transformation properties induced by FLT3 ITDs and modify their sensitivity or resistance in response to established AML drugs as a function of these complex mutations.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Helen F Graham Cancer Center & Research Institute, ChristianaCare, 4701 Stanton-Ogletown Rd., Newark, Delaware 19713
| | - Kelly Banas
- Department of Medical and Molecular Sciences, University of Delaware, Willard E. Hall Education Building, Newark, Delaware 19716
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F Graham Cancer Center & Research Institute, ChristianaCare, 4701 Stanton-Ogletown Rd., Newark, Delaware 19713
| |
Collapse
|
33
|
Deepak P, Siddalingam R, Kumar P, Anand S, Thakur S, Jagdish B, Jaiswal S. Gene based nanocarrier delivery for the treatment of hepatocellular carcinoma. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
35
|
Cheng X, Fan S, Wen C, Du X. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Brief Funct Genomics 2020; 19:209-214. [PMID: 32052006 DOI: 10.1093/bfgp/elaa001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
AbstractClustered regularly interspaced short palindromic repeats (CRISPR) is described as RNA mediated adaptive immune system defense, which is naturally found in bacteria and archaea. CRISPR-Cas9 has shown great promise for cancer treatment in cancer immunotherapy, manipulation of cancer genome and epigenome and elimination or inactivation of carcinogenic viral infections. However, many challenges remain to be addressed to increase its efficacy, including off-target effects, editing efficiency, fitness of edited cells, immune response and delivery methods. Here, we explain CRISPR-Cas classification and its general function mechanism for gene editing. Then, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer. Moreover, the challenges and improvements of CRISPR-Cas9 clinical applications will be discussed.
Collapse
Affiliation(s)
- Xing Cheng
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Shaoyi Fan
- Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine,Guangzhou, China
| | - Chengcai Wen
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xianfa Du
- Department of Orthopaedics, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Are we failing in treatment of adrenocortical carcinoma? Lights and shadows of molecular signatures. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|