1
|
Stembridge N, Doolan BJ, Lavallee ME, Hausser I, Pope FM, Seneviratne SL, Winship IM, Burrows NP. The role of cutaneous manifestations in the diagnosis of the Ehlers-Danlos syndromes. SKIN HEALTH AND DISEASE 2023; 3:e140. [PMID: 36751332 PMCID: PMC9892481 DOI: 10.1002/ski2.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/11/2022]
Abstract
The Ehlers-Danlos syndromes (EDS) comprise a group of inherited connective tissue disorders presenting with features of skin hyperextensibility, joint hypermobility, abnormal scarring and fragility of skin, blood vessels and some organs. The disease is generally diagnosed through the cluster of clinical features, though the addition of genetic analysis is the gold standard for diagnosis of most subtypes. All subtypes display skin manifestations, which are essential to the accurate clinical diagnosis of the condition. Furthermore, cutaneous features can be the first and/or only presenting feature in some cases of EDS and thus understanding these signs is vital for diagnosis. This review focuses on particular cutaneous features of each EDS subtype and their clinical importance. Provision of a specific diagnosis is important for management, prognosis and genetic counselling, often for family members beyond the individual.
Collapse
Affiliation(s)
- Natasha Stembridge
- Department of DermatologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Brent J. Doolan
- St John's Institute of DermatologySchool of Basic and Medical BiosciencesKing's College LondonLondonUK
- Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - Mark E. Lavallee
- Department of OrthopedicsUniversity of Pittsburgh Medical Center of Central PAPittsburghPennsylvaniaUSA
| | - Ingrid Hausser
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - F. Michael Pope
- Department of DermatologyChelsea and Westminster Hospital NHS Foundation Trust (West Middlesex University Hospital)LondonUK
| | - Suranjith L. Seneviratne
- Institute of Immunity and TransplantationRoyal Free Hospital and University College LondonLondonUK
- Nawaloka Hospital Research and Education FoundationNawaloka HospitalsColomboSri Lanka
| | - Ingrid M. Winship
- Department of Genetic MedicineThe Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| | - Nigel P. Burrows
- Department of DermatologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
2
|
Takeda R, Yamaguchi T, Hayashi S, Sano S, Kawame H, Kanki S, Taketani T, Yoshimura H, Nakamura Y, Kosho T. Clinical and molecular features of patients with COL1-related disorders: Implications for the wider spectrum and the risk of vascular complications. Am J Med Genet A 2022; 188:2560-2575. [PMID: 35822426 PMCID: PMC9545637 DOI: 10.1002/ajmg.a.62887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/14/2022] [Accepted: 06/19/2022] [Indexed: 01/24/2023]
Abstract
Abnormalities in type I procollagen genes (COL1A1 and COL1A2) are responsible for hereditary connective tissue disorders including osteogenesis imperfecta (OI), specific types of Ehlers-Danlos syndrome (EDS), and COL1-related overlapping disorder (C1ROD). C1ROD is a recently proposed disorder characterized by predominant EDS symptoms of joint and skin laxity and mild OI symptoms of bone fragility and blue sclera. Patients with C1ROD do not carry specific variants for COL1-related EDS, including classical, vascular, cardiac-valvular, and arthrochalasia types. We describe clinical and molecular findings of 23 Japanese patients with pathogenic or likely pathogenic variants of COL1A1 or COL1A2, who had either OI-like or EDS-like phenotypes. The final diagnoses were OI in 17 patients, classical EDS in one, and C1ROD in five. The OI group predominantly experienced recurrent bone fractures, and the EDS group primarily showed joint hypermobility and skin hyperextensibility, though various clinical and molecular overlaps between OI, COL1-related EDS, and C1ROD as well as intrafamilial phenotypic variabilities were present. Notably, life-threatening vascular complications (vascular dissections, arterial aneurysms, subarachnoidal hemorrhages) occurred in seven patients (41% of those aged >20 years) with OI or C1ROD. Careful lifelong surveillance and intervention regarding bone and vascular fragility could be required.
Collapse
Affiliation(s)
- Ryojun Takeda
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Division of Medical GeneticsNagano Children's HospitalAzuminoJapan,Life Science Research CenterNagano Children's HospitalAzuminoJapan
| | - Tomomi Yamaguchi
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Center for Medical GeneticsShinshu University HospitalMatsumotoJapan,Division of Clinical SequencingShinshu University School of MedicineMatsumotoJapan
| | | | - Shinichirou Sano
- Division of Endocrinology and MetabolismShizuoka Children's HospitalShizuokaJapan
| | - Hiroshi Kawame
- Division of Genomic Medicine Support and Genetic Counseling, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan,Miyagi Children's HospitalSendaiJapan,Division of Clinical GeneticsJikei University HospitalTokyoJapan
| | - Sachiko Kanki
- Department of Thoracic and Cardiovascular SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Takeshi Taketani
- Department of PediatricsShimane University Faculty of MedicineIzumoJapan
| | - Hidekane Yoshimura
- Department of OtorhinolaryngologyShinshu University School of MedicineMatsumotoJapan
| | - Yukio Nakamura
- Department of Orthopaedic SurgeryShinshu University School of MedicineMatsumotoJapan
| | - Tomoki Kosho
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan,Division of Medical GeneticsNagano Children's HospitalAzuminoJapan,Center for Medical GeneticsShinshu University HospitalMatsumotoJapan,Division of Clinical SequencingShinshu University School of MedicineMatsumotoJapan,Research Center for Supports to Advanced ScienceShinshu UniversityMatsumotoJapan
| |
Collapse
|
3
|
Lavanya K, Mahtani K, Abbott J, Jain A, Selvam P, Atwal H, Farres H, Atwal PS. A patient with a novel pathogenic variant in COL5A1 exhibiting prominent vascular and cardiac features. Am J Med Genet A 2022; 188:2192-2197. [PMID: 35396906 DOI: 10.1002/ajmg.a.62745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023]
Abstract
The Ehlers-Danlos Syndromes (EDS) are a group of inherited connective tissue disorders with a worldwide prevalence of 1 in 2500 to 1 in 5000 births irrespective of sex or ethnicity. Fourteen subtypes of Ehlers-Danlos Syndrome (EDS) have been described, each with characteristic phenotypes and associated genes. Pathogenic variants in COL5A1 and COL5A2 cause the classical EDS subtypes. Pathogenic variants in COL3A1 cause vascular EDS. In this case report, we describe a patient with a phenotype resembling that of vascular EDS, caused by a novel pathogenic variant in COL5A1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
4
|
Zekavat SM, Chou EL, Zekavat M, Pampana A, Paruchuri K, Lino Cardenas CL, Koyama S, Ghazzawi Y, Kii E, Uddin MM, Pirruccello J, Zhao H, Wood M, Natarajan P, Lindsay ME. Fibrillar Collagen Variants in Spontaneous Coronary Artery Dissection. JAMA Cardiol 2022; 7:396-406. [PMID: 35234813 PMCID: PMC8892371 DOI: 10.1001/jamacardio.2022.0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Spontaneous coronary artery dissection (SCAD) is an increasingly recognized nonatherosclerotic cause of acute myocardial infarction enriched among individuals with early-onset myocardial infarction but is of unclear etiology. OBJECTIVE To assess which genes contribute to the development of SCAD. DESIGN, SETTING, AND PARTICIPANTS To prioritize genes influencing risk for SCAD, whole-exome sequencing was performed among individuals with SCAD in the discovery and replication cohorts from a tertiary care hospital outpatient specialty clinic, and gene set enrichment analyses were also performed for disruptive coding variants. All patients were sequentially enrolled beginning July 2013. Aggregate prevalence of rare disruptive variants for prioritized gene sets was compared between individuals with SCAD with population-based controls comprising 46 468 UK Biobank participants with whole-exome sequencing. Complementary mice models were used for in vivo validation. Analysis took place between June 2020 and January 2021. MAIN OUTCOMES AND MEASURES The frequency and identity of rare genetic variants in individuals with SCAD. RESULTS Of 130 patients, 109 (83.8%) were female (26 of 32 [81.2%] in the discovery cohort and 83 of 98 [84.7%] in the replication cohort) with mean (SD) age at first SCAD event of 48.41 (8.76) years in the discovery cohort and 47.74 (10.09) years in the replication cohort. Across all patients with SCAD, rare disruptive variants were found within 10 collagen genes (COL3A1, COL5A1, COL4A1, COL6A1, COL5A2, COL12A1, COL4A5, COL1A1, COL1A2, and COL27A1) were 17-fold (P = 1.5 × 10-9) enriched among individuals with SCAD compared with a background of 2506 constrained genes expressed in coronary artery. Furthermore, compared with individuals from the UK Biobank, individuals with SCAD were 1.75-fold (P = .04) more likely to carry disruptive rare variants within fibrillar collagen genes. Complementary mice models haploinsufficient for Col3a1 or Col5a1, the 2 most common collagen gene variants identified in SCAD cases, demonstrated increased risk of arterial dissection and increased size of arterial diameters especially in female mice, with resulting changes in collagen fibril organization and diameter. CONCLUSIONS AND RELEVANCE Unbiased gene discovery in patients with SCAD with independent human and murine validation highlights the role of the extracellular matrix dysfunction in SCAD.
Collapse
Affiliation(s)
- Seyedeh Maryam Zekavat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Elizabeth L. Chou
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Melica Zekavat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Kaavya Paruchuri
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christian Lacks Lino Cardenas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Yousef Ghazzawi
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
- Corrigan Women's Heart Health Program, Massachusetts General Hospital, Boston
| | - Erina Kii
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Md Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - James Pirruccello
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hongyu Zhao
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut
| | - Malissa Wood
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
- Corrigan Women's Heart Health Program, Massachusetts General Hospital, Boston
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
- Cardiovascular Genetics Program, Massachusetts General Hospital, Boston
| | - Mark E. Lindsay
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston
- Cardiovascular Genetics Program, Massachusetts General Hospital, Boston
| |
Collapse
|
5
|
Junkiert-Czarnecka A, Pilarska-Deltow M, Bąk A, Heise M, Latos-Bieleńska A, Zaremba J, Bartoszewska-Kubiak A, Haus O. Next-Generation Sequencing of Connective Tissue Genes in Patients with Classical Ehlers-Danlos Syndrome. Curr Issues Mol Biol 2022; 44:1472-1478. [PMID: 35723357 PMCID: PMC9164033 DOI: 10.3390/cimb44040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Ehlers-Danlos syndrome (EDS) is a common non-inflammatory, congenital connective tissue disorder. Classical type (cEDS) EDS is one of the more common forms, typically caused by mutations in the COL5A1 and COL5A2 genes, though causative mutations in the COL1A1 gene have also been described. Material and methods: The study group included 59 patients of Polish origin, diagnosed with cEDS. The analysis was performed on genomic DNA (gDNA) with NGS technology, using an Illumina sequencer. Thirty-five genes related to connective tissue were investigated. The pathogenicity of the detected variants was assessed by VarSome. Results: The NGS of 35 genes revealed variants within the COL5A1, COL5A2, COL1A1, and COL1A2 genes for 30 of the 59 patients investigated. Our panel detected no sequence variations for the remaining 29 patients. Discussion: Next-generation sequencing, with an appropriate multigene panel, showed great potential to assist in the diagnosis of EDS and other connective tissue disorders. Our data also show that not all causative genes giving rise to cEDS have been elucidated yet.
Collapse
Affiliation(s)
- Anna Junkiert-Czarnecka
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.P.-D.); (A.B.); (M.H.); (A.B.-K.); (O.H.)
- Correspondence: ; Tel.: +48-52-585-3567
| | - Maria Pilarska-Deltow
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.P.-D.); (A.B.); (M.H.); (A.B.-K.); (O.H.)
| | - Aneta Bąk
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.P.-D.); (A.B.); (M.H.); (A.B.-K.); (O.H.)
| | - Marta Heise
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.P.-D.); (A.B.); (M.H.); (A.B.-K.); (O.H.)
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland;
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | - Alicja Bartoszewska-Kubiak
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.P.-D.); (A.B.); (M.H.); (A.B.-K.); (O.H.)
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (M.P.-D.); (A.B.); (M.H.); (A.B.-K.); (O.H.)
| |
Collapse
|
6
|
Foy M, De Mazancourt P, Métay C, Carlier R, Allamand V, Gartioux C, Gillas F, Miri N, Jobic V, Mekki A, Richard P, Michot C, Benistan K. A novel COL1A1 variant in a family with clinical features of hypermobile Ehlers-Danlos syndrome that proved to be a COL1-related overlap disorder. Clin Case Rep 2021; 9:e04128. [PMID: 34484741 PMCID: PMC8405372 DOI: 10.1002/ccr3.4128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022] Open
Abstract
COL1-related overlap disorder is a condition, which is not yet considered as part of the 2017 EDS classification. However, it should be investigated as an alternative diagnosis for any patient with hypermobile EDS. This could allow providing appropriate genetic counseling.
Collapse
Affiliation(s)
- Malika Foy
- Centre de Référence des Syndromes d'Ehlers‐Danlos Non VasculairesHôpital Raymond PoincaréGarchesFrance
| | - Philippe De Mazancourt
- INSERM U1179Université Versailles Saint‐Quentin‐en‐YvelinesMontigny‐le‐BretonneuxFrance
- Service de Biochimie et Biologie MoléculaireHôpital Ambroise ParéAPHPBoulogne‐BillancourtFrance
| | - Corinne Métay
- Sorbonne Université ‐ Inserm UMRS974Centre de Recherche en MyologieGH Pitié‐SalpêtrièreParisFrance
- AP‐HPCentre de Génétique Moléculaire et ChromosomiqueUF Cardiogénétique et Myogénétique Moléculaire et CellulaireGH Pitié‐SalpêtrièreParisFrance
| | - Robert Carlier
- INSERM U1179Université Versailles Saint‐Quentin‐en‐YvelinesMontigny‐le‐BretonneuxFrance
- APHPGHU Paris‐SaclayDMU Smart ImagingService de radiologie Hôpital Raymond PoincaréGarchesFrance
| | - Valérie Allamand
- Sorbonne Université ‐ Inserm UMRS974Centre de Recherche en MyologieGH Pitié‐SalpêtrièreParisFrance
- Unit of Muscle BiologyDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Corine Gartioux
- Sorbonne Université ‐ Inserm UMRS974Centre de Recherche en MyologieGH Pitié‐SalpêtrièreParisFrance
| | - Fabrice Gillas
- Centre de Référence des Syndromes d'Ehlers‐Danlos Non VasculairesHôpital Raymond PoincaréGarchesFrance
| | - Nawel Miri
- Service de Biochimie et Biologie MoléculaireHôpital Ambroise ParéAPHPBoulogne‐BillancourtFrance
| | - Valérie Jobic
- AP‐HPCentre de Génétique Moléculaire et ChromosomiqueUF Cardiogénétique et Myogénétique Moléculaire et CellulaireGH Pitié‐SalpêtrièreParisFrance
| | - Ahmed Mekki
- APHPGHU Paris‐SaclayDMU Smart ImagingService de radiologie Hôpital Raymond PoincaréGarchesFrance
| | - Pascale Richard
- AP‐HPCentre de Génétique Moléculaire et ChromosomiqueUF Cardiogénétique et Myogénétique Moléculaire et CellulaireGH Pitié‐SalpêtrièreParisFrance
| | - Caroline Michot
- INSERM UMR_S1163Institut des Maladies Génétiques ImagineHôpital Necker Enfants MaladesParisFrance
- Centre de Référence des Syndromes d'Ehlers‐Danlos non VasculairesHôpital Necker Enfants MaladesParisFrance
| | - Karelle Benistan
- Centre de Référence des Syndromes d'Ehlers‐Danlos Non VasculairesHôpital Raymond PoincaréGarchesFrance
- INSERM U1179Université Versailles Saint‐Quentin‐en‐YvelinesMontigny‐le‐BretonneuxFrance
| |
Collapse
|
7
|
Colman M, Syx D, De Wandele I, Dhooge T, Symoens S, Malfait F. Clinical and molecular characteristics of 168 probands and 65 relatives with a clinical presentation of classical Ehlers-Danlos syndrome. Hum Mutat 2021; 42:1294-1306. [PMID: 34265140 DOI: 10.1002/humu.24258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
Classical Ehlers-Danlos syndrome (cEDS) is a heritable connective tissue disorder mainly caused by pathogenic variants in COL5A1 or COL5A2, encoding type V collagen. Its diagnosis, based on clinical criteria and molecular confirmation, can be challenging. We report the molecular and clinical characteristics of 168 probands (72 clinically evaluated at our center) and 65 relatives with a clinical presentation of cEDS. Type V collagen defects were found in 145 probands, 121 (83.5%) were located in COL5A1 and 24 (16.5%) in COL5A2. Although 85.6% of molecularly confirmed patients presented the two major clinical criteria (generalized joint hypermobility, hyperextensible skin with atrophic scarring), significant inter- and intrafamilial phenotypic variability was noted. COL5A2 variants often caused a more severe phenotype. Vascular complications were rare in individuals with type V collagen defects (1.4%). Among the 72 probands clinically evaluated in our center, the mutation detection rate was 82.0%. The majority (68.1%) harbored COL5A1/COL5A2 defects. Yet, 13.9% harbored a defect in another gene (COL1A1, PLOD1, TNXB, AEBP1) highlighting important clinical overlap and the need for molecular confirmation of the diagnosis as this has implications regarding follow-up and genetic counseling. Eighteen percent of the 72 probands remained molecularly unexplained and a COL5A1 variant of unknown significance was identified in 6.9%.
Collapse
Affiliation(s)
- Marlies Colman
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Inge De Wandele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tibbe Dhooge
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Borzykh OB, Petrova MM, Karpova EI, Shnayder NA. Connective tissue disease in the practice of a cosmetologist and dermatologist. Features of diagnosis and management of patients. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In the practice of a cosmetologist and a dermatologist, the functional features of the skin are of extremely important. At the same time, monogenic connective tissue disorders (hereditary connective tissue dysplasia) that underlie hereditary syndromes have been known for a long time, but in recent years more attention has been paid to genetic defects that, together with other internal and external factors, lead to manifestations of connective tissue dysfunction. Such disorders are called multifactorial, as a result, a general clinic of connective tissue dysplasia can develop. It is important for dermatologists and cosmetologists to diagnose the presence and risk of connective tissue pathology in time, since these disorders require special features in the clinical management of such patients. To date, there is a slight difference in the understanding of connective tissue pathology in Russia and abroad. Thus, the purpose of this review was to integrate ideas about connective tissue dysplasia in Russia and abroad, as well as to provide dermatologists and cosmetologists with an algorithm for diagnosing and managing patients with connective tissue dysfunction.
Collapse
|
9
|
Ritelli M, Venturini M, Cinquina V, Chiarelli N, Colombi M. Multisystemic manifestations in a cohort of 75 classical Ehlers-Danlos syndrome patients: natural history and nosological perspectives. Orphanet J Rare Dis 2020; 15:197. [PMID: 32736638 PMCID: PMC7393722 DOI: 10.1186/s13023-020-01470-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background The Ehlers-Danlos syndromes (EDS) are rare connective tissue disorders consisting of 13 subtypes with overlapping features including joint hypermobility, skin and generalized connective tissue fragility. Classical EDS (cEDS) is principally caused by heterozygous COL5A1 or COL5A2 variants and rarely by the COL1A1 p.(Arg312Cys) substitution. Current major criteria are (1) skin hyperextensibility plus atrophic scars and (2) generalized joint hypermobility (gJHM). Minor criteria include additional mucocutaneous signs, epicanthal folds, gJHM complications, and an affected first-degree relative. Minimal criteria prompting molecular testing are major criterion 1 plus either major criterion 2 or 3 minor criteria. In addition to these features, the clinical picture also involves multiple organ systems, but large-scale cohort studies are still missing. This study aimed to investigate the multisystemic involvement and natural history of cEDS through a cross-sectional study on a cohort of 75 molecularly confirmed patients evaluated from 2010 to 2019 in a tertiary referral center. The diagnostic criteria, additional mucocutaneous, osteoarticular, musculoskeletal, cardiovascular, gastrointestinal, uro-gynecological, neuropsychiatric, and atopic issues, and facial/ocular features were ascertained, and feature rates compared by sex and age. Results Our study confirms that cEDS is mainly characterized by cutaneous and articular involvement, though none of their hallmarks was represented in all cases and suggests a milder multisystemic involvement and a more favorable natural history compared to other EDS subtypes. Abnormal scarring was the most frequent and characteristic sign, skin hyperextensibility and gJHM were less common, all without any sex and age bias; joint instability complications were more recurrent in adults. Some orthopedic features showed a high prevalence, whereas the other issues related to the investigated organ systems were less recurrent with few exceptions and age-related differences. Conclusions Our findings define the diagnostic relevance of cutaneous and articular features and additional clinical signs associated to cEDS. Furthermore, our data suggest an update of the current EDS nosology concerning scarring that should be considered separately from skin hyperextensibility and that the clinical diagnosis of cEDS may be enhanced by the accurate evaluation of orthopedic manifestations at all ages, faciocutaneous indicators in children, and some acquired traits related to joint instability complications, premature skin aging, and patterning of abnormal scarring in older individuals.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Marina Venturini
- Division of Dermatology, Department of Clinical and Experimental Sciences, Spedali Civili University Hospital, Brescia, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123, Brescia, Italy.
| |
Collapse
|
10
|
Malfait F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers-Danlos syndromes. Nat Rev Dis Primers 2020; 6:64. [PMID: 32732924 DOI: 10.1038/s41572-020-0194-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of hereditary disorders of connective tissue, with common features including joint hypermobility, soft and hyperextensible skin, abnormal wound healing and easy bruising. Fourteen different types of EDS are recognized, of which the molecular cause is known for 13 types. These types are caused by variants in 20 different genes, the majority of which encode the fibrillar collagen types I, III and V, modifying or processing enzymes for those proteins, and enzymes that can modify glycosaminoglycan chains of proteoglycans. For the hypermobile type of EDS, the molecular underpinnings remain unknown. As connective tissue is ubiquitously distributed throughout the body, manifestations of the different types of EDS are present, to varying degrees, in virtually every organ system. This can make these disorders particularly challenging to diagnose and manage. Management consists of a care team responsible for surveillance of major and organ-specific complications (for example, arterial aneurysm and dissection), integrated physical medicine and rehabilitation. No specific medical or genetic therapies are available for any type of EDS.
Collapse
Affiliation(s)
- Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Peter H Byers
- Department of Pathology and Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|