1
|
Cao G, Yu L, Fang J, Shi R, Li H, Lu F, Shen X, Zhu X, Wang S, Kong N. ZP1-Y262C mutation causes abnormal zona pellucida formation and female infertility in humans. Front Genet 2024; 15:1407202. [PMID: 38966008 PMCID: PMC11222594 DOI: 10.3389/fgene.2024.1407202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Defective oocyte maturation is a common cause of female infertility. The loss of the zona pellucida (ZP) represents a specific condition of impaired oocyte maturation. The extracellular matrix known as the ZP envelops mammalian oocytes and preimplantation embryos, exerting significant influence on oogenesis, fertilization, and embryo implantation. However, the genetic factors leading to the loss of the ZP in oocytes are not well understood. This study focused on patients who underwent oocyte retrieval surgery after ovarian stimulation and were found to have abnormal oocyte maturation without the presence of the ZP. Ultrasonography was performed during the surgical procedure to evaluate follicle development. Peripheral blood samples from the patient were subjected to exome sequencing. Here, a novel, previously unreported heterozygous mutation in the ZP1 gene was identified. Within the ZP1 gene, we discovered a novel heterozygous mutation (ZP1 NM_207341.4:c.785A>G (p.Y262C)), specifically located in the trefoil domain. Bioinformatics comparisons further revealed conservation of the ZP1-Y262C mutation across different species. Model predictions of amino acid mutations on protein structure and cell immunofluorescence/western blot experiments collectively confirmed the detrimental effects of the ZP1-Y262C mutation on the function and expression of the ZP1 protein. The ZP1-Y262C mutation represents the novel mutation in the trefoil domain of the ZP1 protein, which is associated with defective oocyte maturation in humans. Our report enhances comprehension regarding the involvement of ZP-associated genes in female infertility and offers enriched understanding for the genetic diagnosis of this condition.
Collapse
Affiliation(s)
- Guangyi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, China
| | - Lina Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruixin Shi
- Center for Reproductive Medicine and Obstetrics and Gynecology, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Huijun Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feifei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoyue Shen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangyu Zhu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Liu SL, Zuo HY, Zhao BW, Guo JN, Liu WB, Lei WL, Li YY, Ouyang YC, Hou Y, Han ZM, Wang WZ, Sun QY, Wang ZB. A heterozygous ZP2 mutation causes zona pellucida defects and female infertility in mouse and human. iScience 2023; 26:107828. [PMID: 37736051 PMCID: PMC10509300 DOI: 10.1016/j.isci.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.
Collapse
Affiliation(s)
- Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hai-Yang Zuo
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei-Zhou Wang
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
3
|
Novel variants in ZP1, ZP2 and ZP3 associated with empty follicle syndrome and abnormal zona pellucida. Reprod Biomed Online 2023; 46:847-855. [PMID: 36931917 DOI: 10.1016/j.rbmo.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
RESEARCH QUESTION Which genetic variants might explain the causes of empty follicle syndrome (EFS) and abnormal zona pellucida (ZP) and affect the success of treatment with assisted reproductive technologies (ART)? DESIGN Whole-exome sequencing was performed in probands with EFS and abnormal ZP. Sanger sequencing was used for variant validation. Using HEK-293T cells, the effects of ZP1 and ZP2 variants on protein expression were explored by western blotting, and the effect of the ZP1 variant on protein location was investigated via immunofluorescence. The protein structure was also analysed to investigate the pathogenicity of variants. RESULTS A homozygous nonsense variant in ZP1 (c.874C>T, p.Gln292*) was detected in a patient with EFS. A novel homozygous frameshift variant in ZP2 (c.836_837delAG, p.Glu279Valfs*6) and a novel heterozygous missense variant in ZP3 (c.1159G>A, p.Val387Met) were identified in two patients with ZP morphological abnormalities, respectively. Western blotting and immunofluorescence analysis showed that the ZP1 variant results in a premature stop codon, leading to the truncated ZP1 protein. The ZP2 variant, which is situated in the N-terminus, triggers the degradation of a premature termination protein. Additionally, the patient with the ZP3 variant achieved clinical pregnancy following intracytoplasmic sperm injection treatment. CONCLUSIONS These findings expand the mutational spectrum of ZP1, ZP2 and ZP3, and provide new evidence for genetic diagnosis of female infertility. The targeted genetic diagnosis of ZP genes is recommended to choose appropriate fertilization methods and improve success rates of treatment with ART.
Collapse
|
4
|
Pujalte M, Camo M, Celton N, Attencourt C, Lefranc E, Jedraszak G, Scheffler F. A ZP1 gene mutation in a patient with empty follicle syndrome: A case report and literature review. Eur J Obstet Gynecol Reprod Biol 2023; 280:193-197. [PMID: 36529558 DOI: 10.1016/j.ejogrb.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Genuine empty follicle syndrome (gEFS) is a rare cause of female infertility; it is defined as the presence of cumulus-oocyte complexes (COCs) in follicular fluid but the absence of oocytes after denudation in an in vitro fertilization (IVF) programme. Mutations in one of the four genes encoding zona pellucida (ZP) proteins have been implicated in gEFS. The objectives of the present study were to explore the molecular basis of idiopathic infertility in a 35-year-old woman with gEFS (observed after four ovarian retrievals), compare her phenotype and genotype with those of other patients described in the literature, and discuss therapeutic approaches that could be adopted by reproductive health centres in this situation. Sequencing of the ZP genes revealed a new homozygous missense variant in ZP1: c.1097G > A;p.(Arg366Gln). The variant is located in the ZP-N domain, which is essential for ZP protein polymerization. An immunohistochemical assessment of an ovarian biopsy confirmed the absence of ZP1 protein. The novel variant appears to prevent ZP assembly, which would explain the absence of normal oocytes after denudation in our patient (and despite the retrieval of COCs). ZP gene sequencing should be considered for patients with a phenotype suggestive of gEFS. An etiological genetic diagnosis enables appropriate genetic counselling and a switch to an IVF programme (with a suitable denudation technique) or an oocyte donation programme.
Collapse
Affiliation(s)
- Mathilde Pujalte
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France
| | - Maïté Camo
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Noémie Celton
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France
| | - Christophe Attencourt
- Department of Anatomy and Pathological Cytology, Amiens University Hospital, Amiens, France
| | - Elodie Lefranc
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France
| | - Guillaume Jedraszak
- Department of Constitutional Genetics, Amiens University Hospital, Amiens, France; EMATIM UR4666, CURS, Jules Verne University of Picardy, Amiens, France
| | - Florence Scheffler
- Reproductive Medicine and Biology Department, CECOS of Picardy, Amiens University Hospital, Amiens, France; Peritox UMR_I 01, CURS, Jules Verne University of Picardy, Amiens, France.
| |
Collapse
|
5
|
Zhou J, Wang M, Yang Q, Li D, Li Z, Hu J, Jin L, Zhu L. Can successful pregnancy be achieved and predicted from patients with identified ZP mutations? A literature review. Reprod Biol Endocrinol 2022; 20:166. [PMID: 36476320 PMCID: PMC9730648 DOI: 10.1186/s12958-022-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In mammals, normal fertilization depends on the structural and functional integrity of the zona pellucida (ZP), which is an extracellular matrix surrounding oocytes. Mutations in ZP may affect oogenesis, fertilization and early embryonic development, which may cause female infertility. METHODS A PubMed literature search using the keywords 'zona pellucida', 'mutation' and 'variant' limited to humans was performed, with the last research on June 30, 2022. The mutation types, clinical phenotypes and pregnancy outcomes were summarized and analyzed. The naive Bayes classifier was used to predict clinical pregnancy outcomes for patients with ZP mutations. RESULTS A total of 29 publications were included in the final analysis. Sixty-nine mutations of the ZP genes were reported in 87 patients with different clinical phenotypes, including empty follicle syndrome (EFS), ZP-free oocytes (ZFO), ZP-thin oocytes (ZTO), degenerated and immature oocytes. The phenotypes of patients were influenced by the types and location of the mutations. The most common effects of ZP mutations are protein truncation and dysfunction. Three patients with ZP1 mutations, two with ZP2 mutations, and three with ZP4 mutations had successful pregnancies through Intracytoplasmic sperm injection (ICSI) from ZFO or ZTO. A prediction model of pregnancy outcome in patients with ZP mutation was constructed to assess the chance of pregnancy with the area under the curve (AUC) of 0.898. The normalized confusion matrix showed the true positive rate was 1.00 and the true negative rate was 0.38. CONCLUSION Phenotypes in patients with ZP mutations might be associated with mutation sites or the degree of protein dysfunction. Successful pregnancy outcomes could be achieved in some patients with identified ZP mutations. Clinical pregnancy prediction model based on ZP mutations and clinical characteristics will be helpful to precisely evaluate pregnancy chance and provide references and guidance for the clinical treatment of relevant patients.
Collapse
Affiliation(s)
- Juepu Zhou
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Meng Wang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Qiyu Yang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Dan Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Zhou Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Juan Hu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lei Jin
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lixia Zhu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
6
|
Zou T, Xi Q, Liu Z, Li Z, Hou M, Zhu L, Jin L, Zhang X. A Novel Homozygous Nonsense Mutation in ZP1 Causes Female Infertility due to Empty Follicle Syndrome. Reprod Sci 2022; 29:3516-3520. [PMID: 35773450 DOI: 10.1007/s43032-022-01024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
ZP1 is a critical glycoprotein in the formation of the zona pellucida. It plays an indispensable role in the maturation of oocytes. To identify the causative gene of empty follicle syndrome (EFS) in a patient from a consanguineous family, whole-exome sequencing was performed in the proband. We identified a novel homozygous nonsense mutation c.1260C > G (p. Tyr420X) in the ZP1 gene from two primary infertile patients. Western blot showed that Y420X mutation in ZP1 gene produced a truncated protein. However, the mutation had no significant effect on subcellular localization of the mutant protein. Our findings confirmed the important role of the ZP1 gene in human female reproduction, enriched the mutation spectrums of ZP1 gene, and expanded its applications in the clinical and molecular diagnoses of EFS.
Collapse
Affiliation(s)
- Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
7
|
New Insights into the Mammalian Egg Zona Pellucida. Int J Mol Sci 2021; 22:ijms22063276. [PMID: 33806989 PMCID: PMC8005149 DOI: 10.3390/ijms22063276] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Mammalian oocytes are surrounded by an extracellular coat called the zona pellucida (ZP), which, from an evolutionary point of view, is the most ancient of the coats that envelope vertebrate oocytes and conceptuses. This matrix separates the oocyte from cumulus cells and is responsible for species-specific recognition between gametes, preventing polyspermy and protecting the preimplantation embryo. The ZP is a dynamic structure that shows different properties before and after fertilization. Until very recently, mammalian ZP was believed to be composed of only three glycoproteins, ZP1, ZP2 and ZP3, as first described in mouse. However, studies have revealed that this composition is not necessarily applicable to other mammals. Such differences can be explained by an analysis of the molecular evolution of the ZP gene family, during which ZP genes have suffered pseudogenization and duplication events that have resulted in differing models of ZP protein composition. The many discoveries made in recent years related to ZP composition and evolution suggest that a compilation would be useful. Moreover, this review analyses ZP biosynthesis, the role of each ZP protein in different mammalian species and how these proteins may interact among themselves and with other proteins present in the oviductal lumen.
Collapse
|