1
|
Portales‐Castillo I, Singal R, Ambrose A, Song JH, Son M, Goo YA, Zhou W, Traum AZ, Coler‐Reilly A, Humphreys BD, Civitelli R, Jüppner H, Lundquist AL, Seres P, Allegretti AS, Mercimek‐Andrews S. Reduced guanidinoacetate in plasma of patients with autosomal dominant Fanconi syndrome due to heterozygous P341L GATM variant and study of organoids towards treatment. JIMD Rep 2024; 65:341-353. [PMID: 39544690 PMCID: PMC11558468 DOI: 10.1002/jmd2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 11/17/2024] Open
Abstract
Autosomal dominant Fanconi syndrome due to a GATM variant (GATM-FS), causes accumulation of misfolded arginine-glycine amidinotransferase (AGAT) in proximal renal tubules leading to cellular injury. GATM-FS presents during childhood and progresses to end-stage kidney disease (ESKD) in adults. We study creatine metabolism in two individuals of unrelated families with a known GATM variant and the effect of creatine supplementation in kidney organoids. Plasma and urine metabolites were measured by mass spectrometry. Brain creatine was assessed by magnetic resonance spectroscopy (MRS). Guanidinoacetate (GAA) synthesis by the AGAT mutant was measured in patient-derived immortalized lymphocytes using stable isotopes of arginine and glycine. The effect of creatine on GATM expression was assessed in human kidney cells and organoids. Several family members from two unrelated families were diagnosed with Fanconi syndrome and had the c.1022C>T (p. P341L) variant in GATM. Two affected individuals in both families had moderately reduced plasma GAA levels. In comparison to wild-type cells, GAA synthesis by patient-derived GATM P341L+/- lymphoblastoid cell lines (LCL) was reduced, but not absent as in GATM cells from a patient with creatine deficiency syndrome. In vitro studies on human kidney organoids revealed reduced AGAT expression after treatment with creatine. Finally, we showed in one patient that creatine supplementation (5 g daily) substantially increased plasma creatine levels. We report low plasma and urine GAA in patients with autosomal dominant GATM-FS and show that creatine downregulates AGAT in human kidney cells.
Collapse
Affiliation(s)
- Ignacio Portales‐Castillo
- Department of Medicine, Division of NephrologyWashington University in St. LouisSt. LouisMissouriUSA
- Bone and Mineral DivisionWashington University in St. LouisSt. LouisMissouriUSA
| | - Rhea Singal
- Bone and Mineral DivisionWashington University in St. LouisSt. LouisMissouriUSA
| | - Anastasia Ambrose
- Department of Medical Genetics Faculty of Medicine and Dentistry University of AlbertaEdmontonAlbertaCanada
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at the McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at the McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Young Ah. Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome InstituteWashington University School of MedicineSt. LouisMissouriUSA
| | - Wen Zhou
- Endocrine UnitMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Avram Z. Traum
- Division of NephrologyBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Benjamin D. Humphreys
- Department of Medicine, Division of NephrologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Roberto Civitelli
- Bone and Mineral DivisionWashington University in St. LouisSt. LouisMissouriUSA
| | - Harald Jüppner
- Endocrine UnitMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Pediatric NephrologyMassGeneral for Children, Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew L. Lundquist
- Division of NephrologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Peter Seres
- Department of Radiology and Diagnostic Imaging, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Andrew S. Allegretti
- Division of NephrologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Saadet Mercimek‐Andrews
- Department of Medical Genetics Faculty of Medicine and Dentistry University of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Li CY, Sun Y, Guo WC, Jiang WN, Zhou W, Chen ZS, Zhang YY, Wang Z, Liu XY, Zhang R, Shao LP. Complex phenotype in Fanconi renotubular syndrome type 1: Hypophosphatemic rickets as the predominant presentation. Clin Chim Acta 2024; 561:119812. [PMID: 38876250 DOI: 10.1016/j.cca.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
GATM-related Fanconi renotubular syndrome 1 (FRTS1) is a form of renal Fanconi syndrome (RFS), which is a disorder of solute and water reabsorption caused by defects in the function of the entire proximal tubule. Recent findings reveal the molecular basis of FRTS1: Intramitochondrial fiber aggregation triggered by mutant GATM provides a starting point for proximal tubule damage and drives disease progression. As a rare and newly recognized inherited kidney disease, the complex manifestations of FRTS1 are easily underdiagnosed or misdiagnosed. We discuss the complex phenotype of a 26-year-old woman with onset in infancy and a long history of hypophosphatemic rickets. We also identified a novel heterozygous missense variant in the GATM gene in this patient. The novel variant and phenotype we report expand the disease spectrum of FRTS1. We recommend screening for GATM in children with RFS, especially in patients with resistant rickets who have previously had negative genetic testing. In addition, we found pathological deposition of mutant GATM proteins within mitochondria in the patient's urinary sediment cells by a combination of electron microscopy and immunofluorescence. This unique urine cytology experiment has the potential to be a valuable tool for identifying patients with RRTS1.
Collapse
Affiliation(s)
- Chang-Ying Li
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wen-Cong Guo
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Wei-Na Jiang
- Department of Pathology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Wei Zhou
- Department of Radiology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zeng-Sheng Chen
- Department of Clinical Laboratory, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yi-Yin Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhi Wang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu-Yan Liu
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Ran Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.
| | - Le-Ping Shao
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Wu X, Lu M, Yun D, Gao S, Sun F. Long-read single-cell sequencing reveals the transcriptional landscape of spermatogenesis in obstructive azoospermia and Sertoli cell-only patients. QJM 2024; 117:422-435. [PMID: 38192002 DOI: 10.1093/qjmed/hcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND High-throughput single-cell RNA sequencing (scRNA-seq) is widely used in spermatogenesis. However, it only reveals short reads in germ and somatic cells, limiting the discovery of novel transcripts and genes. AIM This study shows the long-read transcriptional landscape of spermatogenesis in obstructive azoospermia (OA) and Sertoli cell-only patients. DESIGN Single cells were isolated from testicular biopsies of OA and non-obstructive azoospermia (NOA) patients. Cell culture was identified by comparing PacBio long-read single-cell sequencing (OA n = 3, NOA n = 3) with short-read scRNA-seq (OA n = 6, NOA n = 6). Ten germ cell types and eight somatic cell types were classified based on known markers. METHODS PacBio long-read single-cell sequencing, short-read scRNA-seq, polymerase chain reaction. RESULTS A total of 130 426 long-read transcripts (100 517 novel transcripts and 29 909 known transcripts) and 49 508 long-read transcripts (26 002 novel transcripts and 23 506 known transcripts) have been detected in OA and NOA patients, respectively. Moreover, 36 373 and 1642 new genes are identified in OA and NOA patients, respectively. Importantly, specific expressions of long-read transcripts were detected in germ and stomatic cells during normal spermatogenesis. CONCLUSION We have identified total full-length transcripts in OA and NOA, and new genes were found. Furthermore, specific expressed full-length transcripts were detected, and the genomic structure of transcripts was mapped in different cell types. These findings may provide valuable information on human spermatogenesis and the treatment of male infertility.
Collapse
Affiliation(s)
- X Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - M Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - S Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - F Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
He T, Xiong L, Lin K, Yi J, Duan C, Zhang J. Functional metabolomics reveals arsenic-induced inhibition of linoleic acid metabolism in mice kidney in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123949. [PMID: 38636836 DOI: 10.1016/j.envpol.2024.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Arsenic (As) is a heavy metal known for its detrimental effects on the kidneys, but the precise mechanisms underlying its toxicity remain unclear. In this study, we employed an integrated approach combining traditional toxicology methods with functional metabolomics to explore the nephrotoxicity induced by As in mice. Our findings demonstrated that after 28 days of exposure to sodium arsenite, blood urea nitrogen, serum creatinine levels were significantly increased, and pathological examination of the kidneys revealed dilation of renal tubules and glomerular injury. Additionally, uric acid, total cholesterol, and low-density lipoprotein cholesterol levels were significant increased while triglyceride level was decreased, resulting in renal insufficiency and lipid disorders. Subsequently, the kidney metabolomics analysis revealed that As exposure disrupted 24 differential metabolites, including 14 up-regulated and 10 down-regulated differential metabolites. Ten metabolic pathways including linoleic acid and glycerophospholipid metabolism were significantly enriched. Then, 80 metabolic targets and 168 predicted targets were identified using metabolite network pharmacology analysis. Of particular importance, potential toxicity targets, such as glycine amidinotransferase, mitochondrial (GATM), and nitric oxide synthase, and endothelial (NOS3), were prioritized through the "metabolite-target-pathway" network. Receiver operating characteristics curve and molecular docking analyses suggested that 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, linoleic acid, and L-hydroxyarginine might be functional metabolites associated with GATM and NOS3. Moreover, targeted verification result showed that the level of linoleic acid in As group was 0.4951 μg/mL, which was significantly decreased compared with the control group. And in vivo and in vitro protein expression experiments confirmed that As exposure inhibited the expression of GATM and NOS3. In conclusion, these results suggest that As-induced renal injury may be associated with the inhibition of linoleic acid metabolism through the down-regulation of GATM and NOS3, resulting in decreased levels of linoleic acid, 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, and L-hydroxyarginine metabolites.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jing Yi
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
5
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
6
|
Ragate DC, Memon SS, Karlekar M, Lila AR, Sarathi V, Jamale T, Thakare S, Patil VA, Shah NS, Bandgar TR. Inherited Fanconi renotubular syndromes: unveiling the intricacies of hypophosphatemic rickets/osteomalacia. J Bone Miner Metab 2024; 42:155-165. [PMID: 38310177 DOI: 10.1007/s00774-023-01490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Fanconi renotubular syndromes (FRTS) are a rare group of inherited phosphaturic disorders with limited Indian as well as global data on this condition. Here, we describe the experience of a single Endocrinology center from Western India on FRTS. MATERIALS AND METHODS Comprehensive clinical, biochemical, radiological, management, and genetic details of FRTS patients managed between 2010 and 2023 were collected and analyzed. RESULTS FRTS probands had mutations (eight novel) in six genes [CLCN5 (n = 4), SLC2A2 (n = 2), GATM, EHHADH, HNF4A, and OCRL (1 each)]. Among 15 FRTS patients (11 families), rickets/osteomalacia was the most common (n = 14) presentation with wide inter- and intra-familial phenotypic variability. Delayed diagnosis (median: 8.8 years), initial misdiagnosis (8/11 probands), and syndrome-specific discriminatory features (8/11 probands) were commonly seen. Hypophosphatemia, elevated alkaline phosphatase, normal parathyroid hormone (median: 36 pg/ml), high-normal/elevated 1,25(OH)2D (median: 152 pg/ml), hypercalciuria (median spot urinary calcium to creatinine ratio: 0.32), and variable proximal tubular dysfunction(s) were observed. Elevated C-terminal fibroblast growth factor 23 in two probands was misleading, till the genetic diagnosis was reached. Novel observations in our FRTS cohort were preserved renal function (till sixth decade) and enthesopathy in FRTS1 and FRTS3 families, respectively. CONCLUSION Our findings underscore frequent under- and misdiagnosis of FRTS; hence, a high index of suspicion for FRTS in phosphopenic rickets/osteomalacia, with early consideration of genetic testing is essential to ensure timely diagnosis of FRTS. The novel variants and phenotypic manifestations described here expand the disease spectrum of FRTS.
Collapse
Affiliation(s)
- Divya C Ragate
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Saba Samad Memon
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India.
| | - Manjiri Karlekar
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Anurag Ranjan Lila
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India
| | - Tukaram Jamale
- Department of Nephrology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Sayali Thakare
- Department of Nephrology, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Virendra A Patil
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Nalini S Shah
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| | - Tushar R Bandgar
- Department of Endocrinology OPD, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, 4000012, India
| |
Collapse
|
7
|
Koyun M, Ertosun MG, Aksoy GK, Çomak E, Akman S. An uncommon cause of hypophosphatemic rickets: Answers. Pediatr Nephrol 2023; 38:2613-2614. [PMID: 36995464 DOI: 10.1007/s00467-023-05952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Affiliation(s)
- Mustafa Koyun
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Nephrology, Akdeniz University, Antalya, 07070, Turkey.
| | - Mustafa Gökhan Ertosun
- Faculty of Medicine, Department of Medical Genetics, Akdeniz University, Antalya, Turkey
| | - Gülşah Kaya Aksoy
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Nephrology, Akdeniz University, Antalya, 07070, Turkey
| | - Elif Çomak
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Nephrology, Akdeniz University, Antalya, 07070, Turkey
| | - Sema Akman
- Faculty of Medicine, Department of Pediatrics, Division of Pediatric Nephrology, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|