1
|
Boulksibat A, Tempio A, Bardoni B. Central role of altered phosphodiesterase 2-dependent signaling in the pathophysiology of cognition-based brain disorders. Neural Regen Res 2025; 20:2302-2303. [PMID: 39359080 DOI: 10.4103/nrr.nrr-d-24-00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Asma Boulksibat
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Inserm U1323, Valbonne, France
| | | | | |
Collapse
|
2
|
Kakar N, Mascarenhas S, Ali A, Azmatullah, Ijlal Haider SM, Badiger VA, Ghofrani MS, Kruse N, Hashmi SN, Pozojevic J, Balachandran S, Toft M, Malik S, Händler K, Fatima A, Iqbal Z, Shukla A, Spielmann M, Radhakrishnan P. Further evidence of biallelic NAV3 variants associated with recessive neurodevelopmental disorder with dysmorphism, developmental delay, intellectual disability, and behavioral abnormalities. Hum Genet 2024:10.1007/s00439-024-02718-6. [PMID: 39708122 DOI: 10.1007/s00439-024-02718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied. Recently, five bi-allelic and three mono-allelic variants in NAV3 were reported in 12 individuals from eight unrelated families with neurodevelopmental disorder (NDD). Here, we report five patients from three unrelated consanguineous families segregating autosomal recessive NDD. Patients have symptoms of dysmorphism, intellectual disability, developmental delay, and behavioral abnormalities. Exome sequencing (ES) was performed on two affected individuals from one large family, and one affected individual from each of the other two families. ES revealed two homozygous nonsense c.6325C > T; p.(Gln2109Ter) and c.6577C > T; p.(Arg2193Ter) and a homozygous splice site (c.243 + 1G > T) variants in the NAV3 (NM_001024383.2). Analysis of single-cell sequencing datasets from embryonic and young adult human brains revealed that NAV3 is highly expressed in the excitatory neurons, inhibitory neurons, and microglia, consistent with its role in neurodevelopment. In conclusion, in this study, we further validate biallelic protein truncating variants in NAV3 as a cause of NDD, expanding the spectrum of pathogenic variants in this newly discovered NDD gene.
Collapse
Affiliation(s)
- Naseebullah Kakar
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
- Department for Biotechnology, FLS&I, BUITEMS, Quetta, Pakistan
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Asmat Ali
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Azmatullah
- Department of Zoology, Human Genetics Program, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Vaishnavi Ashok Badiger
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mobina Shadman Ghofrani
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Nathalie Kruse
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Sohana Nadeem Hashmi
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Jelena Pozojevic
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Saranya Balachandran
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O Box 1171, 0318, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Sajid Malik
- Department of Zoology, Human Genetics Program, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kristian Händler
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany
| | - Ambrin Fatima
- Department of Biological and Biomedical Science, The Aga Khan University, Stadium Road, Karachi, 78400, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Malte Spielmann
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, University of Lübeck and University of Kiel, 23562, Lübeck, Germany.
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
3
|
Cardarelli S, Biglietto M, Orsini T, Fustaino V, Monaco L, de Oliveira do Rêgo AG, Liccardo F, Masciarelli S, Fazi F, Naro F, De Angelis L, Pellegrini M. Modulation of cAMP/cGMP signaling as prevention of congenital heart defects in Pde2A deficient embryos: a matter of oxidative stress. Cell Death Dis 2024; 15:169. [PMID: 38395995 PMCID: PMC10891154 DOI: 10.1038/s41419-024-06549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Martina Biglietto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Luciana De Angelis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
4
|
Delhaye S, Jarjat M, Boulksibat A, Sanchez C, Tempio A, Turtoi A, Giorgi M, Lacas-Gervais S, Baj G, Rovere C, Trezza V, Pellegrini M, Maurin T, Lalli E, Bardoni B. Defects in AMPAR trafficking and microglia activation underlie socio-cognitive deficits associated to decreased expression of phosphodiesterase 2 a. Neurobiol Dis 2024; 191:106393. [PMID: 38154608 DOI: 10.1016/j.nbd.2023.106393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Phosphodiesterase 2 A (PDE2A) is an enzyme involved in the homeostasis of cAMP and cGMP and is the most highly expressed PDE in human brain regions critical for socio-cognitive behavior. In cerebral cortex and hippocampus, PDE2A expression level is upregulated in Fmr1-KO mice, a model of the Fragile X Syndrome (FXS), the most common form of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Indeed, PDE2A translation is negatively modulated by FMRP, whose functional absence causes FXS. While the pharmacological inhibition of PDE2A has been associated to its pro-cognitive role in normal animals and in models of ID and ASD, homozygous PDE2A mutations have been identified in patients affected by ID, ASD and epilepsy. To clarify this apparent paradox about the role of PDE2A in brain development, we characterized here Pde2a+/- mice (homozygote animals being not viable) at the behavioral, cellular, molecular and electrophysiological levels. Pde2a+/- females display a milder form of the disorder with reduced cognitive performance in adulthood, conversely males show severe socio-cognitive deficits throughout their life. In males, these phenotypes are associated with microglia activation, elevated glutathione levels and increased externalization of Glutamate receptor (GluR1) in CA1, producing reduced mGluR-dependent Long-term Depression. Overall, our results reveal molecular targets of the PDE2A-dependent pathway underlying socio-cognitive performance. These results clarify the mechanism of action of pro-cognitive drugs based on PDE2A inactivation, which have been shown to be promising therapeutic approaches for Alzheimer's disease, schizophrenia, FXS as well as other forms of ASD.
Collapse
Affiliation(s)
- Sébastien Delhaye
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Marielle Jarjat
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Asma Boulksibat
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Clara Sanchez
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Alessandra Tempio
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Andrei Turtoi
- Inserm U1194, Université Montpellier, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier Cedex 5, France
| | - Mauro Giorgi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, DAHFMO, Sapienza University of Rome, 00161 Rome, Italy
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06100 Nice, France
| | - Gabriele Baj
- Department of Life Science, University of Trieste, 34100 Trieste, Italy
| | - Carole Rovere
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | | | - Manuela Pellegrini
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, DAHFMO, Sapienza University of Rome, 00161 Rome, Italy; Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015 Monterotondo Scalo, Rome, Italy
| | - Thomas Maurin
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Enzo Lalli
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France
| | - Barbara Bardoni
- CNRS UMR7275, Inserm U1323, Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|