1
|
Liu XQ, Hu T, Wu GL, Qiao LJ, Cai YF, Wang Q, Zhang SJ. Tanshinone IIA, the key compound in Salvia miltiorrhiza, improves cognitive impairment by upregulating Aβ-degrading enzymes in APP/PS1 mice. Int J Biol Macromol 2024; 254:127923. [PMID: 37944734 DOI: 10.1016/j.ijbiomac.2023.127923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
In Alzheimer's disease (AD), amyloid-beta (Aβ) plays a crucial role in pathogenesis. Clearing Aβ from the brain is considered as a key therapeutic strategy. Previous studies indicated that Salvia miltiorrhiza (Danshen) could protect against AD. However, the main anti-AD components in Danshen and their specific mechanisms are not clear. In this study, pharmacological network analysis indicated that Tanshinone IIA (Tan IIA) was identified as the key active compound in Danshen contributing to protect against AD. Then, APP/PS1 double transgenic mice were employed to examine the neuroprotective effect of Tan IIA. APP/PS1 mice (age, 6 months) were administered (10 and 20 mg/kg) for 8 weeks. Tan IIA improved learning and anxiety behaviors in APP/PS1 mice. Furthermore, Tan IIA reduced oxidative stress, inhibited neuronal apoptosis, improved cholinergic nervous system and decreased endoplasmic reticulum stress in the brain of APP/PS1 mice. Moreover, Tan IIA treatment reduced the level of Aβ. Molecular docking result showed that Tan IIA might block AD by upregulating Aβ-degrading enzymes. Western blot results confirmed that the expressions of insulin degrading enzymes (IDE) and neprilysin (NEP) were significantly increased after Tan IIA treatment, which demonstrated that Tan IIA improved AD by increasing Aβ-degrading enzymes.
Collapse
Affiliation(s)
- Xiao-Qi Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tian Hu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
2
|
Linnane N, Kenny DP, Hijazi ZM. Congenital heart disease: addressing the need for novel lower-risk percutaneous interventional strategies. Expert Rev Cardiovasc Ther 2023; 21:329-336. [PMID: 37114439 DOI: 10.1080/14779072.2023.2208862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With the advent of improved neonatal care, increasingly vulnerable higher-risk patients with complex congenital heart anomalies are presenting for intervention. This group of patients will always have a higher risk of an adverse event during a procedure but by recognising this risk and with the introduction risk scoring systems and thus the development of novel lower risk procedures, the rate of adverse events can be reduced. AREA COVERED This article reviews risk scoring systems for congenital catheterization and demonstrates how they can be used to reduce the rate of adverse events. Then novel low risk strategies are discussed for low weight infants e.g. patent ductus arteriosus (PDA) stent insertion; premature infants e.g. PDA device closure; and transcatheter pulmonary valve replacement. Finally, how risk is assessed and managed within the inherent bias of an institution is discussed. EXPERT OPINION There has been a remarkable improvement in the rate of adverse events in congenital cardiac interventions but now, as the benchmark of mortality rate is switched to morbidity and quality of life, continued innovation into lower risk strategies and understanding inherent bias when assessing risk will be key to continuing this improvement.
Collapse
Affiliation(s)
- N Linnane
- Department of Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - D P Kenny
- Department of Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Royal College of Surgeons, Dublin, Ireland
| | - Z M Hijazi
- Department of Cardiovascular Diseases, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, New York, NY, USA
- Jordan University, Amman, Jordan
| |
Collapse
|
3
|
van der Ven JPG, Günthel M, van den Bosch E, Kamphuis VP, Blom NA, Breur J, Berger RMF, Bogers AJJC, Koopman L, Ten Harkel ADJ, Christoffels V, Helbing WA. Ventricular function and biomarkers in relation to repair and pulmonary valve replacement for tetralogy of Fallot. Open Heart 2023; 10:openhrt-2022-002238. [PMID: 37024245 PMCID: PMC10083861 DOI: 10.1136/openhrt-2022-002238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
OBJECTIVE Cardiac surgery may cause temporarily impaired ventricular performance and myocardial injury. We aim to characterise the response to perioperative injury for patients undergoing repair or pulmonary valve replacement (PVR) for tetralogy of Fallot (ToF). METHODS We enrolled children undergoing ToF repair or PVR from four tertiary centres in a prospective observational study. Assessment-including blood sampling and speckle tracking echocardiography-occurred before surgery (T1), at the first follow-up (T2) and 1 year after the procedures (T3). Ninety-two serum biomarkers were expressed as principal components to reduce multiple statistical testing. RNA Sequencing was performed on right ventricular (RV) outflow tract samples. RESULTS We included 45 patients with ToF repair aged 4.3 (3.4 - 6.5) months and 16 patients with PVR aged 10.4 (7.8 - 12.7) years. Ventricular function following ToF repair showed a fall-and-rise pattern for left ventricular global longitudinal strain (GLS) (-18±4 to -13±4 to -20±2, p < 0.001 for each comparison) and RV GLS (-19±5 to -14±4 to 20±4, p < 0.002 for each comparison). This pattern was not seen for patients undergoing PVR. Serum biomarkers were expressed as three principal components. These phenotypes are related to: (1) surgery type, (2) uncorrected ToF and (3) early postoperative status. Principal component 3 scores were increased at T2. This increase was higher for ToF repair than PVR. The transcriptomes of RV outflow tract tissue are related to patients' sex, rather than ToF-related phenotypes in a subset of the study population. CONCLUSIONS The response to perioperative injury following ToF repair and PVR is characterised by specific functional and immunological responses. However, we did not identify factors relating to (dis)advantageous recovery from perioperative injury. TRIAL REGISTRATION NUMBER Netherlands Trial Register: NL5129.
Collapse
Affiliation(s)
- Jelle P G van der Ven
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Marie Günthel
- Department of Medical Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eva van den Bosch
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Vivian P Kamphuis
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Pediatrics, Division of Pediatric Cardiology, Leiden Univerisity Medical Center, Leiden, The Netherlands
| | - Nicolaas A Blom
- Department of Paediatric Cardiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johannes Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolf M F Berger
- Department of Pediatric Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Laurens Koopman
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| | - Arend D J Ten Harkel
- Department of Pediatrics, Division of Pediatric Cardiology, Leiden Univerisity Medical Center, Leiden, The Netherlands
| | | | - Willem A Helbing
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Rinaldi E, Sadeghi S, Lluri G, Salem M, Levi D, Aboulhosn J. Immunosuppression as a risk factor for developing transcatheter pulmonary valve endocarditis. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2021. [DOI: 10.1016/j.ijcchd.2021.100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
5
|
Alkashkari W, Albugami S, Abbadi M, Niyazi A, Alsubei A, Hijazi ZM. Transcatheter pulmonary valve replacement in pediatric patients. Expert Rev Med Devices 2020; 17:541-554. [PMID: 32459512 DOI: 10.1080/17434440.2020.1775578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Right ventricular outflow tract (RVOT) dysfunction is common among individuals with congenital heart disease (CHD). Surgical intervention often carries prohibitive risks due to the need for sequential pulmonary valve (PV) replacements throughout their life in the majority of cases. Transcatheter pulmonary valve replacement (tPVR) is one of the most exciting recent developments in the treatment of CHD and has evolved to become an attractive alternative to surgery in patients with RVOT dysfunction. AREAS COVERED In this review, we examine the pathophysiology of RVOT dysfunction, indications for tPVR, and the procedural aspect. Advancements in clinical application and valve technology will also be covered. EXPERT OPINION tPVR is widely accepted as an alternative to surgery to address RVOT dysfunction, but still significant numbers of patients with complex RVOT morphology deemed not suitable for tPVR. As the technology continues to evolve, new percutaneous valves will allow such complex RVOT patient to benefit from tPVR.
Collapse
Affiliation(s)
- Wail Alkashkari
- Department of Cardiology, King Faisal Cardiac Center, Ministry of National Guard Health Affair , Jeddah, Saudi Arabia.,Medical Research Department, King Abdullah International Medical Research Center , Jeddah, Saudi Arabia.,Medical Research Department, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia
| | - Saad Albugami
- Department of Cardiology, King Faisal Cardiac Center, Ministry of National Guard Health Affair , Jeddah, Saudi Arabia.,Medical Research Department, King Abdullah International Medical Research Center , Jeddah, Saudi Arabia.,Medical Research Department, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia
| | - Mosa Abbadi
- Department of Cardiology, King Faisal Cardiac Center, Ministry of National Guard Health Affair , Jeddah, Saudi Arabia.,Medical Research Department, King Abdullah International Medical Research Center , Jeddah, Saudi Arabia.,Medical Research Department, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia
| | - Akram Niyazi
- Department of Cardiology, King Faisal Cardiac Center, Ministry of National Guard Health Affair , Jeddah, Saudi Arabia.,Medical Research Department, King Abdullah International Medical Research Center , Jeddah, Saudi Arabia.,Medical Research Department, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia
| | - Amani Alsubei
- Department of Cardiology, King Faisal Cardiac Center, Ministry of National Guard Health Affair , Jeddah, Saudi Arabia.,Medical Research Department, King Abdullah International Medical Research Center , Jeddah, Saudi Arabia.,Medical Research Department, King Saud Bin Abdulaziz University for Health Science , Jeddah, Saudi Arabia
| | - Ziyadi M Hijazi
- Sidra Heart Center, Sidra Medicine , Doha, Qatar.,Medical Research Department, Weill Cornell Medicine , New York, NY, USA
| |
Collapse
|
6
|
Ribeiro JM, Teixeira R, Lopes J, Costa M, Pires A, Gonçalves L. Transcatheter Versus Surgical Pulmonary Valve Replacement: A Systemic Review and Meta-Analysis. Ann Thorac Surg 2020; 110:1751-1761. [PMID: 32268142 DOI: 10.1016/j.athoracsur.2020.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Transcatheter pulmonary valve replacement (TPVR) has emerged as an alternative to surgery in patients with pulmonary valve dysfunction. METHODS We searched the Medline and Cochrane databases since their inception to January 2019 as well as references from article, for all publications comparing TPVR with surgical PVR (SPVR). Studies were considered for inclusion if they reported comparative data regarding any of the study endpoints. The primary endpoint was early mortality after PVR. Secondary endpoints included procedure-related complications, length of hospital stay, mortality during follow-up, infective endocarditis, need for reintervention, post-PVR transpulmonary peak systolic gradient, and significant pulmonary regurgitation. RESULTS There were no differences in perioperative mortality between groups (0.2% vs 1.2%; pooled odds ratio, 0.56; 95% confidence interval, 0.19-1.59; P = .27, I2 = 0%). However TPVR conferred a significant reduction in procedure-related complications and length of hospital stay compared with SPVR. Midterm mortality and the need for repeat intervention were similar with both techniques, but pooled infective endocarditis was significantly more frequent in the TPVR group (5.8 vs 2.7%; pooled odds ratio, 3.09; 95% confidence interval, 1.89-5.06; P < .001, I2 = 0%). TPVR was associated with less significant PR and a trend towards a lower transpulmonary systolic gradient during follow-up. CONCLUSIONS TPVR is a safe alternative to SPVR in selected patients and is associated with a shorter length of hospital stay and fewer procedure-related complications. At midterm follow-up TPVR was comparable with SPVR in terms of mortality and repeat intervention but was associated with an increased risk of infective endocarditis.
Collapse
Affiliation(s)
- Joana Maria Ribeiro
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Rogério Teixeira
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - João Lopes
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Marco Costa
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - António Pires
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal; Serviço de Cardiologia Pediátrica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lino Gonçalves
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Wadia SK, Lluri G, Aboulhosn JA, Laks H, Biniwale RM, Van Arsdell GS, Levi DS, Salem MM, Shannon KM, Moore JP. Postoperative and short-term atrial tachyarrhythmia burdens after transcatheter vs surgical pulmonary valve replacement among congenital heart disease patients. CONGENIT HEART DIS 2019; 14:838-845. [PMID: 31282099 DOI: 10.1111/chd.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/29/2019] [Accepted: 06/16/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We examined the atrial tachyarrhythmia (AT) burden among patients with congenital heart disease (CHD) following transcatheter (TC-) or surgical (S-) pulmonary valve replacement (PVR). DESIGN/SETTING This was a retrospective observational study of patients who underwent PVR from 2010 to 2016 at UCLA Medical Center. PATIENTS Patients of all ages who had prior surgical repair for CHD were included. Patients with a history of congenitally corrected transposition of the great arteries, underwent a hybrid PVR procedure, or had permanent atrial fibrillation (AF) without a concomitant ablation were excluded. OUTCOME MEASURES The primary outcome was a time-to-event analysis of sustained AT. Sustained ATs were defined as focal AT, intra-atrial reentrant tachycardia/atrial flutter, or AF lasting at least 30 seconds or terminating with cardioversion or antitachycardia pacing. RESULTS Two hundred ninety-seven patients (TC-PVR, n = 168 and S-PVR, n = 129) were included. During a median follow-up of 1.2 years, nine events occurred in TC-PVR group (5%) vs 23 events in S-PVR group (18%). In the propensity adjusted models, the following factors were associated with significant risk of AT after PVR: history of AT, age at valve implantation, severe right atrial enlargement, and S-PVR. In the secondary analysis, TC-PVR was associated with lower adjusted risk of AT events in the postoperative epoch (first 30 days), adjusted IRR 0.31 (0.14-0.97), P = .03, but similar risk in the short-term epoch, adjusted IRR 0.64 (0.14-2.94), P = .57. CONCLUSION There was an increased risk of AT in the first 30 days following S-PVR compared to TC-PVR. Additional factors associated with risk of AT events after PVR were a history of AT, age at valve implantation, and severe right atrial enlargement.
Collapse
Affiliation(s)
- Subeer K Wadia
- Division of Cardiology, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California
| | - Gentian Lluri
- Division of Cardiology, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California
| | - Jamil A Aboulhosn
- Division of Cardiology, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California
| | - Hillel Laks
- Division of Cardiothoracic Surgery, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Reshma M Biniwale
- Division of Cardiothoracic Surgery, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Glen S Van Arsdell
- Division of Cardiothoracic Surgery, UCLA Mattel Children's Hospital, Los Angeles, California
| | - Daniel S Levi
- Division of Pediatric Cardiology, Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Morris M Salem
- Division of Pediatric Cardiology, Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Kevin M Shannon
- Division of Cardiology, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California.,Division of Pediatric Cardiology, Mattel Children's Hospital at UCLA, Los Angeles, California
| | - Jeremy P Moore
- Division of Cardiology, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California.,Division of Pediatric Cardiology, Mattel Children's Hospital at UCLA, Los Angeles, California
| |
Collapse
|
8
|
Shahanavaz S, McElhinney DB. Transcatheter pulmonary valve replacement: evolving indications and application. Future Cardiol 2018; 14:511-524. [DOI: 10.2217/fca-2018-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The introduction of transcatheter therapy for valvular heart disease has changed the spectrum of care of patients with a variety of cardiovascular conditions. Transcatheter valve placement has become established as a method of treating pathologic regurgitation or stenosis of the pulmonary valve, right ventricular outflow tract or a right ventricle to pulmonary artery conduit. In this review, we examine the pathophysiology of and indications for transcatheter pulmonary valve replacement along with procedural complications. Advancements in clinical application and valve technology will also be covered.
Collapse
Affiliation(s)
- Shabana Shahanavaz
- Department of Pediatrics, Division of Cardiology, Washington University in St. Louis School of Medicine, St. Louis, 63110, MO, USA
| | - Doff B McElhinney
- Departments of Pediatrics & Cardiothoracic Surgery, Lucile Packard Children’s Hospital Heart Center, Stanford University School of Medicine, Palo Alto, Stanford-94304-5731, CA, USA
| |
Collapse
|
9
|
Corno AF. Pulmonary Valve Regurgitation: Neither Interventional Nor Surgery Fits All. Front Pediatr 2018; 6:169. [PMID: 29951475 PMCID: PMC6008531 DOI: 10.3389/fped.2018.00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022] Open
Abstract
Introduction: PV implantation is indicated for severe PV regurgitation after surgery for congenital heart defects, but debates accompany the following issues: timing of PV implantation; choice of the approach, percutaneous interventional vs. surgical PV implantation, and choice of the most suitable valve. Timing of pulmonary valve implantation: The presence of symptoms is class I evidence indication for PV implantation. In asymptomatic patients indication is agreed for any of the following criteria: PV regurgitation > 20%, indexed end-diastolic right ventricular volume > 120-150 ml/m2 BSA, and indexed end-systolic right ventricular volume > 80-90 ml/m2 BSA. Choice of the approach: percutaneous interventional vs. surgical: The choice of the approach depends upon the morphology and the size of the right ventricular outflow tract, the morphology and the size of the pulmonary arteries, the presence of residual intra-cardiac defects and the presence of extremely dilated right ventricle. Choice of the most suitable valve for surgical implantation: Biological valves are first choice in most of the reported studies. A relatively large size of the biological prosthesis presents the advantage of avoiding a right ventricular outflow tract obstruction, and also of allowing for future percutaneous valve-in-valve implantation. Alternatively, biological valved conduits can be implanted between the right ventricle and pulmonary artery, particularly when a reconstruction of the main pulmonary artery and/or its branches is required. Hybrid options: combination of interventional and surgical: Many progresses extended the implantation of a PV with combined hybrid interventional and surgical approaches. Major efforts have been made to overcome the current limits of percutaneous PV implantation, namely the excessive size of a dilated right ventricular outflow tract and the absence of a cylindrical geometry of the right ventricular outflow tract as a suitable landing for a percutaneous PV implantation. Conclusion: Despite tremendous progress obtained with modern technologies, and the endless fantasy of researchers trying to explore new forms of treatment, it is too early to say that either the interventional or the surgical approach to implant a PV can fit all patients with good long-term results.
Collapse
Affiliation(s)
- Antonio F. Corno
- East Midlands Congenital Heart Centre, University Hospitals of Leicester, Leicester, United Kingdom
- Cardiovascular Research Center, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
10
|
Wadia SK, Lluri G, Aboulhosn JA, Shivkumar K, Reemtsen BL, Laks H, Biniwale RM, Levi DS, Salem M, Moore JP. Ventricular arrhythmia burden after transcatheter versus surgical pulmonary valve replacement. Heart 2018; 104:1791-1796. [DOI: 10.1136/heartjnl-2017-312769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/29/2023] Open
Abstract
ObjectiveComparative ventricular arrhythmia (VA) outcomes following transcatheter (TC-PVR) or surgical pulmonary valve replacement (S-PVR) have not been evaluated. We sought to compare differences in VAs among patients with congenital heart disease (CHD) following TC-PVR or S-PVR.MethodsPatients with repaired CHD who underwent TC-PVR or S-PVR at the UCLA Medical Center from 2010 to 2016 were analysed retrospectively. Patients who underwent hybrid TC-PVR or had a diagnosis of congenitally corrected transposition of the great arteries were excluded. Patients were screened for a composite of non-intraoperative VA (the primary outcome variable), defined as symptomatic/recurrent non-sustained ventricular tachycardia (VT) requiring therapy, sustained VT or ventricular fibrillation. VA epochs were classified as 0–1 month (short-term), 1–12 months (mid-term) and ≥1 year (late-term).ResultsThree hundred and two patients (TC-PVR, n=172 and S-PVR, n=130) were included. TC-PVR relative to S-PVR was associated with fewer clinically significant VAs in the first 30 days after valve implant (adjusted HR 0.20, p=0.002), but similar mid-term and late-term risks (adjusted HR 0.72, p=0.62 and adjusted HR 0.47, p=0.26, respectively). In propensity-adjusted models, S-PVR, patient age at PVR and native right ventricular outflow tract (RVOT) (vs bioprosthetic/conduit outflow tract) were independent predictors of early VA after pulmonary valve implantation (p<0.05 for all).ConclusionCompared with S-PVR, TC-PVR was associated with reduced short-term but comparable mid-term and late-term VA burdens. Risk factors for VA after PVR included a surgical approach, valve implantation into a native RVOT and older age at PVR.
Collapse
|
11
|
Morgan GJ. Pulmonary Regurgitation- Is the Future Percutaneous or Surgical? Front Pediatr 2018; 6:184. [PMID: 30042933 PMCID: PMC6048258 DOI: 10.3389/fped.2018.00184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022] Open
Abstract
For decades, surgical replacement of the pulmonary valve has been seen as the gold-standard technique. Until the advent of Medtronic's Melody valve, it was the only option. Whilst radical changes in surgical techniques have not been forthcoming, rapid and substantial developments in the techniques and available technology for percutaneous valves now cause us to ask if the gold-standard moniker now belongs in the cath lab. This manuscript explores the recent history and future of a revolution in this large area of congenital cardiac practice.
Collapse
Affiliation(s)
- Gareth J Morgan
- Congenital Interventional Cardiologist, Heart Institute, Children's Hospital of Colorado, University Colorado Hospital, Colorado University, Denver, CO, United States
| |
Collapse
|