1
|
Celles CAS, Dos Reis AC. Titanium: A systematic review of the relationship between crystallographic profile and cell adhesion. J Biomed Mater Res B Appl Biomater 2024; 112:e35450. [PMID: 39082230 DOI: 10.1002/jbm.b.35450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 01/23/2025]
Abstract
Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: "What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?" by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.
Collapse
Affiliation(s)
- Cícero Andrade Sigilião Celles
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Zhao D, Leng Y, Liu Y, Zhou X. Effect of calcium hydrothermal treatment of zirconia abutments on human gingival fibroblasts. J Biomed Mater Res B Appl Biomater 2023; 111:1883-1889. [PMID: 37289176 DOI: 10.1002/jbm.b.35291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Zirconia materials have been increasingly used in implant rehabilitation due to their excellent physical and esthetic properties. Stable peri-implant epithelial tissue adhesion to the transmucosal implant abutment may significantly enhance the efficacy of implant long-term stability. However, it is difficult to form stable chemical or biological bindings with peri-implant epithelial tissue due to the strong biological inertia of zirconia materials. In the present study, we investigated whether calcium hydrothermal treatment of zirconia promotes sealing of peri-implant epithelial tissue. In vitro experiments were performed to analyze the effects of calcium hydrothermal treatment on zirconia surface morphology and composition by scanning electron microscopy and energy dispersive spectrometry. Immunofluorescence staining of adherent proteins, namely, F-actin and integrin β1, in human gingival fibroblast line (HGF-l) cells was performed. In the calcium hydrothermal treatment group, there was higher expression of these adherent proteins and increased HGF-l cell proliferation. An in vivo study was conducted by extracting the maxillary right first molars of rats and replacing them with mini-zirconia abutment implants. The calcium hydrothermal treatment group showed better attachment at the zirconia abutment surface, which inhibited horseradish peroxidase penetration at 2 weeks post-implantation. These results demonstrated that calcium hydrothermal treatment of zirconia improves the seal between the implant abutment and surrounding epithelial tissues, potentially increasing the long-term stability of the implant.
Collapse
Affiliation(s)
- Dan Zhao
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yanjun Leng
- School of Stomatology, Central South University, Changsha, China
| | - Yishu Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xudiyang Zhou
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Valantijiene V, Mazeikiene A, Alkimavicius J, Linkeviciene L, Alkimaviciene E, Linkevicius T. Clinical and immunological evaluation of peri-implant tissues around ultra-polished and conventionally-polished zirconia abutments. A 1-year follow-up randomized clinical trial. J Prosthodont 2023. [PMID: 36896861 DOI: 10.1111/jopr.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
PURPOSE This is a randomized clinical trial to compare the clinical and immunological performance of ultrasmooth versus conventionally-smooth zirconia abutments placed subgingivally after a period of 1 year. MATERIALS AND METHODS Sixty-two bone level platform-switched implants (NobelParallel CC) were placed epicrestally in the mandibular molar or premolar region in 62 patients. After osseointegration, implants were restored with auto polymerizing acrylic resin crowns and subsequently randomly allocated to two groups according to the type of screw-retained zirconia crown prescribed. The control group received custom zirconia restoration with the subgingival zirconia part conventionally polished, whereas the test group implants were restored with ultra-polished zirconia abutments. Periodontal parameters (PD, PI, and BOP) and marginal bone level changes (MBLC) were recorded for each implant 2 months after insertion (T0), 1 month after final delivery of the crown (T2), and at the 1-year follow-up (T3). Immunological mediators from gingival crevicular fluid (IL-1α, IL-1ra, and TNF-α) were inspected at 1 month after provisional (T1) and accordingly at T2 and T3. Data was analyzed statistically, and significance level was set to α = 0.05. RESULTS After 1 year, there were no significant changes in PD control-2.18 ± 0.89 mm and test-2.5 ± 0.72 mm (p = 0.073). PD between T2 and T3 dropped significantly in the test group (p = 0.037) and remained stable in the control group. PI was not different in both groups at T0 (p = 0.518) and T2 (p = 0.817). At T3, the test group (0.9 ± 1.01) had a significantly lower PI than the control group (1.55 ± 1.23) (p = 0.035). There was no difference in BOP positive cases between groups after 1 year (control-61.3%, test-51.7%, and p = 0.455). The amount of IL-1ra decreased significantly in the test group (41.75 ± 57.58) (p = 0.001) but not in the control group (59.59 ± 70.43) (p = 0.177). MBLC for the control and test groups after 1 year were 0.68 ± 0.7 and 0.94 ± 0.65 mm (p = 0.061). CONCLUSIONS PD dynamics, PI, BOP, and IL-1ra revealed better outcomes around ultra-polished zirconia abutments than around conventionally polished zirconia abutments.
Collapse
Affiliation(s)
| | - Asta Mazeikiene
- Institute of Biomedical Sciences, Department of Physiology Biochemistry Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | | | - Evelina Alkimaviciene
- Department of Dental and Oral Pathology, Lithuanian University of Health Science, Kaunas, Lithuania
| | | |
Collapse
|
4
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Roth LA, Bastos MF, Melo MA, Barão VAR, Costa RC, Giro G, Souza JGS, Grzech-Leśniak K, Shibli JA. The Potential Role of a Surface-Modified Additive-Manufactured Healing Abutment on the Expression of Integrins α2, β1, αv, and β6 in the Peri-Implant Mucosa: A Preliminary Human Study. Life (Basel) 2022; 12:life12070937. [PMID: 35888027 PMCID: PMC9316083 DOI: 10.3390/life12070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
The stability of peri-implant soft tissues is essential for long-term success. Integrins play a vital role in biological processes through developing and maintaining cell interactions; however, few studies have evaluated the effects of modifications to abutment surfaces on cell adhesion across integrin expression. Therefore, this pilot study assessed the influence of different surface topographies of titanium healing abutments prepared by additive manufacturing (AM) on the gene expression levels of the integrin subunits α2, β1, αv, and β6 in the human peri-implant mucosa. Thirteen healthy adults were included. Depending on the number of required implants, the subjects were distributed in different groups as a function of healing abutment topography: group 1 (fully rough surface); group 2 (upper machined + lower rough); group 3 (rough upper surface + lower machined); group 4 (fully machined). A total of 40 samples (n = 10/group) of the peri-implant mucosa around the abutments were collected 30 days after implant placement, and subsequently, the gene expression levels were evaluated using real-time PCR. The levels of gene expression of β1-subunit integrin were upregulated for individuals receiving fully rough surface abutments compared with the other surface topographies (p < 0.05). However, the healing abutment topography did not affect the gene expression levels of the α2, αv, and β6 integrin subunits in the human peri-implant mucosa (p > 0.05). This preliminary study suggested that controlled modifications of the surface topography of titanium healing abutments produced by AM may influence the quality of the peri-implant mucosa in the early stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Leandro Amadeu Roth
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| | - Marta Ferreira Bastos
- Postgraduate Program in Aging Sciences, Universidade São Judas Tadeu, Rua. Taquari, 546, São Paulo 03166-000, SP, Brazil;
| | - Marcelo A. Melo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| | - Valentim A. R. Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, SP, Brazil; (V.A.R.B.); (R.C.C.)
| | - Raphael C. Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas—UNICAMP, Piracicaba 13414-903, SP, Brazil; (V.A.R.B.); (R.C.C.)
| | - Gabriela Giro
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| | - João Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Av. Waldomiro Marcondes Oliveira, 20-Ibituruna, Montes Claros 39401-303, MG, Brazil
| | - Kinga Grzech-Leśniak
- Department of Oral Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (L.A.R.); (M.A.M.); (G.G.); (J.G.S.S.); or (J.A.S.)
| |
Collapse
|
6
|
Egashira Y, Atsuta I, Narimatsu I, Zhang X, Takahashi R, Koyano K, Ayukawa Y. Effect of carbonate apatite as a bone substitute on oral mucosal healing in a rat extraction socket: in vitro and in vivo analyses using carbonate apatite. Int J Implant Dent 2022; 8:11. [PMID: 35254552 PMCID: PMC8901832 DOI: 10.1186/s40729-022-00408-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Background Low bone quantity and quality are serious problems that affect the prognosis of implants in the cosmetic field. Therefore, artificial bone substitutes are frequently used. However, whether there is a difference in the effect of either bone substitute on soft tissue healing is unclear given their greatly different absorbability. In this study, we used hydroxyapatite (HAp) and carbonate apatite (CO3Ap) as bone substitutes to analyze the epithelial and connective tissue healing after tooth extraction. Methods In vitro, oral mucosa-derived epithelial cells (OECs) collected from 4-day-old Wistar rats were seeded on HAp or CO3Ap and evaluated for adhesion, proliferation, migration, apoptosis, and morphology. Fibroblasts (FBs) were also analyzed for their ability to express collagen. In vivo, the extraction of maxillary right first (M1) and second molars (M2) of 6-week-old male Wistar rats was performed, followed by insertion of HAp or CO3Ap granules into the M1 and M2 sites. The oral mucosal healing process was then evaluated histochemically after 7 and 14 days. Results In vitro, high collagen expression by FBs in the CO3Ap group was observed and the surface analysis showed spreading of the FBs on the CO3Ap surface. However, the activity of OECs was suppressed on CO3Ap. Two weeks after CO3Ap implantation, soft tissue healing was observed, and recovery of the connective tissue was observed on the remaining CO3Ap. Conclusions Our results suggest that the formation of soft tissues, including connective tissue, was promoted by CO3Ap in the extraction socket within a short period.
Collapse
|
7
|
Ismail HS, Ali AI, Garcia-Godoy F. In vitro biocompatibility testing of different base materials used for elevation of proximal subgingival margins using human gingival epithelial cells. J Oral Sci 2022; 64:118-123. [PMID: 35173097 DOI: 10.2334/josnusd.21-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE To analyze the biological effects of four base materials used for elevation of proximal subgingival margins on gingival epithelial cells. METHODS Twenty-eight specimens for each of the four base materials (total 112 specimens) were used: resin-modified glass ionomer (RMGI), glass hybrid (HV-GIC), flowable bulk fill resin composite (Bulk Flow) and bioactive ionic resin (Activa). Proximal enamel and root dentin were used as controls. Gingival epithelial cell viability was calculated after direct incubation on all four types of material for either 24 h or 72 h using both the methyl tetrazolium and trypan blue dye exclusion assays. Data were analyzed statistically using one-way analysis of variance, Tukey post hoc test and independent sample t-test (P < 0.05). RESULTS Cell viability values in both assays showed significant differences among the study groups. Bulk Flow showed the highest values, followed in order by Activa and the control groups. Both HV-GIC and RMGI had the lowest values. Cell viability in all of the study groups was higher after incubation for 72 h than after 24 h. CONCLUSION In terms of biocompatibility with epithelial tissues, bulk fill resin composite appears to be most suitable, followed by bioactive composite, for subgingival placement than glass ionomer-based materials, especially that containing 2-hydroxy-ethyl methacrylate.
Collapse
Affiliation(s)
- Hoda S Ismail
- Operative Dentistry Department, Faculty of Dentistry, Mansoura University
| | - Ashraf I Ali
- Operative Dentistry Department, Faculty of Dentistry, Mansoura University
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center.,The Forsyth Institute
| |
Collapse
|
8
|
Miranda A, Seyer D, Palomino-Durand C, Morakchi-Goudjil H, Massonie M, Agniel R, Rammal H, Pauthe E, Gand A. Poly-L-Lysine and Human Plasmatic Fibronectin Films as Proactive Coatings to Improve Implant Biointegration. Front Bioeng Biotechnol 2022; 9:807697. [PMID: 35111738 PMCID: PMC8801876 DOI: 10.3389/fbioe.2021.807697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.
Collapse
Affiliation(s)
- Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Carla Palomino-Durand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Houda Morakchi-Goudjil
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Mathilde Massonie
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
| | - Hassan Rammal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- EFOR Healthcare Paris, Biocompatibility Platform, Levallois-Perret, France
| | - Emmanuel Pauthe
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| | - Adeline Gand
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, Institut des Matériaux, CY Cergy-Paris Université, Cergy-Pontoise, France
- *Correspondence: Emmanuel Pauthe, ; Adeline Gand,
| |
Collapse
|
9
|
Atsuta I, Narimatsu I, Morimoto T, Cheng CH, Koyano K, Ayukawa Y. Assessment of the Soft-Tissue Seal at the Interface between the Base of the Fixed Denture Pontic and the Oral Mucosa. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3997. [PMID: 34300915 PMCID: PMC8306894 DOI: 10.3390/ma14143997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
Fixed dentures (bridges) are often selected as a treatment option for a defective prosthesis. In this study, we assess the contact condition between the base of the pontic and oral mucosa, and examine the effect of prosthetic preparation and material biocompatibility. The molars were removed and replaced with experimental implants with a free-end type bridge superstructure after one week. In Experiment 1, we assessed different types of prosthetic pre-treatment: (1) the untreated control group (Con: mucosa recovering from the tooth extraction); (2) the laser irradiation group (Las: mucosa recovering after the damage caused by a CO2 laser); and (3) the tooth extraction group (Ext: mucosa recovering immediately after the teeth extraction). In Experiment 2, five materials (titanium, zirconia, porcelain, gold-platinum alloy, and self-curing resin) were placed at the base of the bridge pontic. Four weeks after the placement of the bridge, the mucosa adjacent to the pontic base was histologically analyzed. In Experiment 1, the Con and Las groups exhibited no formation of an epithelial sealing structure on the pontic base. In the Ext group, adherent epithelium was observed. In Experiment 2, the sealing properties at the pontic interface were superior for titanium and the zirconia compared with those made of porcelain or gold-platinum alloy. In the resin group, a clear delay in epithelial healing was observed.
Collapse
Affiliation(s)
- Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.N.); (C.-H.C.); (Y.A.)
| | | | - Chi-Hsiang Cheng
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.N.); (C.-H.C.); (Y.A.)
| | - Kiyoshi Koyano
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.N.); (C.-H.C.); (Y.A.)
| |
Collapse
|
10
|
Furuhashi A, Ayukawa Y, Atsuta I, Rakhmatia YD, Koyano K. Soft Tissue Interface with Various Kinds of Implant Abutment Materials. J Clin Med 2021; 10:jcm10112386. [PMID: 34071480 PMCID: PMC8199343 DOI: 10.3390/jcm10112386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Various materials, such as titanium, zirconia and platinum-gold (Pt-Au) alloy, have been utilized for dental implant trans-mucosal parts. However, biological understanding of soft tissue reaction toward these materials is limited. The aim of this study was to compare the response of cell lines and soft tissue to titanium, zirconia and Pt-Au substrata. The surface hydroxyl groups and protein adsorption capacities of the substrata were measured. Next, gingival epithelial-like cells (Sa3) and fibroblastic cells (NIH3T3) were cultured on the materials, and initial cell attachment was measured. Immuno-fluorescent staining of cell adhesion molecules and cytoskeletal proteins was also performed. In the rat model, experimental implants constructed from various materials were inserted into the maxillary tooth extraction socket and the soft tissue was examined histologically and immunohistochemically. No significant differences among the materials were observed regarding the amount of surface hydroxyl groups and protein adsorption capacity. Significantly fewer cells of Sa3 and NIH3T3 adhered to the Pt-Au alloy compared to the other materials. The expression of cell adhesion molecules and a well-developed cytoskeleton was observed, both Sa3 and NIH3T3 on each material. In an animal model, soft tissue with supracrestal tissue attachment was observed around each material. Laminin-5 immuno-reactivity was seen in epithelia on both titanium and zirconia, but only in the bottom of epithelia on Pt-Au alloy. In conclusion, both titanium and zirconia, but not Pt-Au alloy, displayed excellent cell adhesion properties.
Collapse
Affiliation(s)
- Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (Y.A.); (Y.D.R.)
- Correspondence: ; Tel.: +81-92-642-6441
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (Y.A.); (Y.D.R.)
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.A.); (K.K.)
| | - Yunia Dwi Rakhmatia
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (Y.A.); (Y.D.R.)
| | - Kiyoshi Koyano
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (I.A.); (K.K.)
| |
Collapse
|
11
|
Hu J, Atsuta I, Ayukawa Y, Zhou X, Dwi Rakhmatia Y, Koyano K. The impact of surface alteration on epithelial tissue attachment after the mechanical cleaning of titanium or zirconia surface. J Oral Rehabil 2020; 47:1065-1076. [PMID: 31820464 DOI: 10.1111/joor.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Mechanical plaque removal may alter the surface morphology of the gingival penetration part of the implant. We applied an air-powered abrasive system (AP), titanium curette (TC), stainless curette (SC), ultrasound scaler (US), and titanium brush (TB) which are commonly used to remove plaque, to titanium or zirconia and the changes in surface morphology and the epithelial attach against substrata. MATERIALS AND METHODS (a) The morphological changes of titanium and zirconia after mechanical cleaning were assessed by scanning electron microscopy and a roughness analyser. (b) Oral epithelial cells of rats were inoculated on the surface of the materials after mechanical cleaning, and the adherence of epithelial cells was observed. (c) The maxillary first molars were extracted from the rats and replaced by experimental titanium or zirconia implants. The length of the immunoreactive laminin-332 band was observed at the implant-peri-implant epithelium interface. RESULTS (a) The surface roughness increased in experimental groups except the AP group. (b) Among the experimental groups, the AP group showed the highest number of attached cells. (c) The length of the immunoreactive laminin-332 band was longer in the control group than those in all five experimental groups. Among the experimental groups, the AP group showed the longest band. CONCLUSION All mechanical cleaning methods increased the surface roughness of the materials except AP. AP did not cause distinct implant surface alterations. Surface alteration caused by mechanical cleaning may evoke inferior for epithelial attachment and reduce resistance against foreign infiltration.
Collapse
Affiliation(s)
- Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xudiyang Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yunia Dwi Rakhmatia
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Barker E, AlQobaly L, Shaikh Z, Franklin K, Moharamzadeh K. Implant Soft-Tissue Attachment Using 3D Oral Mucosal Models-A Pilot Study. Dent J (Basel) 2020; 8:E72. [PMID: 32645887 PMCID: PMC7558259 DOI: 10.3390/dj8030072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 01/25/2023] Open
Abstract
PURPOSE The aim of this study was to investigate soft-tissue attachment to different metal, ceramic, and polymer implant surfaces using an inflamed, three-dimensional (3D), tissue-engineered, human oral mucosal model, as well as multiple-endpoint qualitative and quantitative biological approaches. METHODS Normal human oral fibroblasts, OKF6/TERT-2 keratinocytes and THP-1 monocytes were cultured, and full-thickness, 3D oral mucosal models were engineered inside tissue culture inserts. Sand-blasted and acid-etched (SLA) and machined (M) titanium-zirconium alloy (TiZr; commercially known as Roxolid; Institut Straumann AG, Switzerland), ceramic (ZrO2), and polyether ether ketone (PEEK) rods (Ø 4 mm × 8 mm) were inserted into the center of tissue-engineered oral mucosa following a Ø 4mm punch biopsy. Inflammation was simulated with addition of the lipopolysaccharide (LPS) of Escherichia coli (E. coli) and tumor necrosis factor (TNF)-alpha to the culture medium. Implant soft-tissue attachment was assessed using histology, an implant pull-test with PrestoBlue assay, and scanning electron microscopy (SEM). RESULTS Inflamed, full-thickness, 3D human oral mucosal models with inserted implants were successfully engineered and histologically characterized. The implant pull-test with PrestoBlue assay showed higher viability of the tissue that remained attached to the TiZr-SLA surface compared to the other test groups. This difference was statistically significant (p < 0.05). SEM analysis showed evidence of epithelial cell attachment on different implant surfaces. CONCLUSIONS The inflamed, 3D, oral mucosal model has the potential to be used as a suitable in vitro test system for visualization and quantification of implant soft-tissue attachment. The results of our study indicate greater soft tissue attachment to TiZr-SLA compared to TiZr-M, ceramic, and PEEK surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (E.B.); (L.A.); (Z.S.); (K.F.)
| |
Collapse
|
13
|
Hu J, Atsuta I, Ayukawa Y, Zhou T, Narimatsu I, Koyano K. Effect of titanium or zirconia implant abutments on epithelial attachments after ultrasonic cleaning. J Oral Sci 2020; 62:331-334. [PMID: 32581180 DOI: 10.2334/josnusd.19-0332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Zirconia is widely employed as a material during dental implant work because of its superior esthetics. This study sought to evaluate the impact of titanium or zirconia implant abutments on epithelial attachments after ultrasonic cleaning. These implants were inserted into the extraction socket of rat maxillary first molars. Then, the length of the horseradish peroxidase (HRP) reaction was measured. In addition, titanium and zirconia disks were cleaned using an ultrasonic scaler, surface morphology changes were observed, and the number of epithelial cell attachments to the surface was measured. Ultimately, the surfaces of the titanium disks were easier to damage than those of the zirconia ones. There was no difference in the number of epithelial cell attachments between the two materials with the ultrasonic cleaning. The length of the HRP reaction was shorter on the zirconia implant abutment surface than on the titanium one after mechanical cleaning. In conclusion, zirconia is harder than titanium and a better choice for use in the epithelial tissue attachment. Zirconia is more suitable as a material for implant abutments than titanium.
Collapse
Affiliation(s)
- Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Tianren Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| |
Collapse
|
14
|
Zhou X, Atsuta I, Ayukawa Y, Narimatsu I, Zhou T, Hu J, Koyano K. Effects of Different Divalent Cation Hydrothermal Treatments of Titanium Implant Surfaces for Epithelial Tissue Sealing. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2038. [PMID: 32349433 PMCID: PMC7254254 DOI: 10.3390/ma13092038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
The improvement of peri-implant epithelium (PIE) adhesion to titanium (Ti) may promote Ti dental implant stability. This study aims to investigate whether there is a positive effect of Ti hydrothermally treated (HT) with calcium chloride (CaCl2), zinc chloride (ZnCl2), and strontium chloride (SrCl2) on promoting PIE sealing. We analyzed the response of a rat oral epithelial cell (OEC) culture and performed an in vivo study in which the maxillary right first molars of rats were extracted and replaced with calcium (Ca)-HT, zinc (Zn)-HT, strontium (Sr)-HT, or non-treated control (Cont) implants. The OEC adhesion on Ca-HT and Zn-HT Ti plates had a higher expression of adhesion proteins than cells on the Cont and Sr-HT Ti plates. Additionally, the implant PIE of the Ca-HT and Zn-HT groups revealed better expression of immunoreactive laminin-332 (Ln-322) at 2 weeks after implantation. The Ca-HT and Zn-HT groups also showed better attachment at the implant-PIE interface, which inhibited horseradish peroxidase penetration. These results demonstrated that the divalent cations of Ca (Ca2+) and Zn (Zn2+)-HT improve the integration of epithelium around the implant, which may facilitate the creation of a soft barrier around the implant to protect it from foreign body penetration.
Collapse
Affiliation(s)
- Xudiyang Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan;
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Tianren Zhou
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Jiangqi Hu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan; (X.Z.); (I.N.); (T.Z.); (J.H.); (K.K.)
| |
Collapse
|
15
|
Narimatsu I, Atsuta I, Ayukawa Y, Oshiro W, Yasunami N, Furuhashi A, Koyano K. Epithelial and Connective Tissue Sealing around Titanium Implants with Various Typical Surface Finishes. ACS Biomater Sci Eng 2019; 5:4976-4984. [PMID: 33455245 DOI: 10.1021/acsbiomaterials.9b00499] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Soft tissue barrier around a dental implant plays a crucial role in the success of dental implants because it protects underlying hard tissue structures. A number of surface alteration procedures of implants have been introduced to improve bone-implant contact, but there has been little research on the peri-implant soft tissue (PIS) seal. The present study focuses on the "biologic width" of epithelial and connective tissue seals around implants with various typical surface finishes by testing surfaces that have been machined (Ms), roughened by sandblasting and acid etching (Rs), treated hydrothermally with CaCl2 (Cs), or anodized (As). Ms, Rs, and As techniques are commonly used to finish surfaces of commercially available dental implants. The Cs technique was reported to produce strong epithelial cell-titanium adhesion. For culture study, rat oral epithelial cells (OECs) and fibroblasts were cultured on Ms, Rs, Cs, and As titanium plates. There was less cell adherence of OECs and more collagen expression when cultured on Rs and As plates than when cultured on Ms and Cs plates. For the in vivo study, implants with Ms, Rs, Cs, and As surfaces were placed in the rats' oral cavity. Although the PIS structure was similar to that around natural teeth, a horseradish peroxide assay revealed that the sealing ability around the Ms and Rs implants was weaker than that around Cs implants. After 16 weeks, Rs implants exhibited peri-implant epithelial apical down-growth and had lost bone support. Thus, although a smooth surface (Ms and Cs) showed better epithelial attachment, rough surfaces (Rs and As) are more suitable for binding to the connective tissue. Strong epithelium-implant attachment seems to be a fundamental defense against foreign body penetration. Selecting suitable surfaces to ensure strong sealing is important for implant success.
Collapse
Affiliation(s)
- Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ikiru Atsuta
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Wakana Oshiro
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriyuki Yasunami
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
Sakamoto Y, Ayukawa Y, Furuhashi A, Kamo M, Ikeda J, Atsuta I, Haraguchi T, Koyano K. Effect of Hydrothermal Treatment with Distilled Water on Titanium Alloy for Epithelial Cellular Attachment. MATERIALS 2019; 12:ma12172748. [PMID: 31461930 PMCID: PMC6747835 DOI: 10.3390/ma12172748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/08/2023]
Abstract
The enhancement of oral epithelial adhesion to the trans-mucosal material of dental implants may improve their long-term stability. The aim of this study is to investigate whether hydrothermal treatment with distilled water (HT-DW) applied to a Ti-6Al-4V (Ti64) alloy could improve epithelial cellular attachment. We hypothesized that this treatment would enhance the adsorption of proteins and the adhesion of gingival epithelial GE1 cells. This treatment changed the surface crystal structure into an anatase type of titanium oxide without an apparent change of surface roughness or topography. Nitrogen was not detected on the HT-DW-treated Ti64, which indicates decontamination. HT-DW-treated Ti64 exhibited a hydrophilic surface with a less than 10° angle of water contact. Adsorption of laminin-332 to the HT-DW-treated Ti64 was significantly greater than that of the untreated Ti64 plates (64). The number of GE1 cells on the HT-DW-treated Ti64 at 1 and 3 days was significantly lower than that on 64; however, cell adhesion strength on HT-DW was greater, with a higher expression of integrin β4, compared with 64. This indicates that the HT-DW treatment of Ti64 improves the integration of GE1 cells, which might facilitate the development of a soft tissue barrier around the implant.
Collapse
Affiliation(s)
- Yasushige Sakamoto
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Michimasa Kamo
- Medical Division, KYOCERA Corporation, Shiga 520-2362, Japan
| | - Junji Ikeda
- Medical Division, KYOCERA Corporation, Shiga 520-2362, Japan
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuya Haraguchi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Nagao R, Esaki D, Shibata Y, Ikawa S, Kitano K, Ayukawa Y, Matsushita Y, Takeshita T, Yamashita Y, Matsuzaki M, Koyano K. Investigation of a novel sterilization method for biofilms formed on titanium surfaces. Dent Mater J 2019; 38:654-662. [PMID: 31189796 DOI: 10.4012/dmj.2018-274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of effective methods to disinfect biofilms on dental materials is medically important. This study evaluated the bactericidal effects of peroxynitric acid (HOONO2; PNA) on biofilms formed on titanium surfaces. Streptococcus gordonii was cultured on either machined or rough titanium discs that were then used to evaluate the bactericidal effects of seven reagents, i.e., normal saline, benzalkonium chloride disinfectant solution, chlorhexidine digluconate solution, three concentration types of PNA, and inactivated PNA. Using low concentration of PNA, the bacterial count based on a CFU assay reached an undetectable level within 10 s; this bactericidal effect was the strongest observed for the seven tested reagents. Thus, PNA may be more useful than other disinfectants for sterilizing biofilms on titanium surfaces that have been contaminated with bacteria.
Collapse
Affiliation(s)
- Rei Nagao
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Daisuke Esaki
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Yukie Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Satoshi Ikawa
- Osaka Research Institute of Industrial Science and Technology
| | - Katsuhisa Kitano
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Yasuyuki Matsushita
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Masaaki Matsuzaki
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| |
Collapse
|
18
|
Atsuta I, Ayukawa Y, Furuhashi A, Narimatsu I, Kondo R, Oshiro W, Koyano K. Epithelial sealing effectiveness against titanium or zirconia implants surface. J Biomed Mater Res A 2019; 107:1379-1385. [PMID: 30724473 DOI: 10.1002/jbm.a.36651] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/29/2019] [Indexed: 11/09/2022]
Abstract
The aims of implant treatment now involve not only restoration of mastication function, but also recovery of esthetics. Currently, zirconia is widely used as an esthetic material for implant abutment. Therefore, it is very important to understand the efficacy of zirconia for epithelial sealing as an implant material. We compared the effects of materials on the sealing of the peri-implant epithelium (PIE) to titanium (Ti) or zirconia (Zr) implants, for application to clinical work. Maxillary first molars were extracted from rats and replaced with Ti or Zr implants. The sealing of the PIE to the implants was evaluated with immunohistochemistry observation and HRP analysis. The morphological and functional changes in rat oral epithelial cells (OECs) cultured on Ti or Zr plates were also evaluated. After 4 weeks, the PIE on the Ti and Zr implants showed similar structures. The Zr implants appeared to form a weak epithelial seal at the tissue-implant interface, and exhibited markedly less adhesive structures than the Ti implants under electron microscopic observation. In the in vitro experiments, decreased expression levels of adhesion proteins were observed in OECs cultured on Zr plates compared with those cultured on Ti plates. In addition, the cell adherence on Zr plates was reduced, while the cell migration was low on Ti plates. Zr is a better choice for an esthetic implant material, but needs further improvement for integration with the epithelial wound healing process around a dental implant. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Ikiru Atsuta
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikue Narimatsu
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryosuke Kondo
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Wakana Oshiro
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Basu S, Ghosh A, Barui A, Basu B. Epithelial cell functionality on electroconductive Fe/Sr co-doped biphasic calcium phosphate. J Biomater Appl 2019; 33:1035-1052. [PMID: 30630385 DOI: 10.1177/0885328218821549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the perspective of dental restorative applications, co-doped bioceramics have not been explored much. From the clinical perspective, a successful dental implant is expected to interact with peri-prosthetic bones, gingival tissue, and surrounding connective tissues. The interaction of implant and implant coating materials with bone tissue is well studied. However, their interaction with surrounding epithelial components needs scientific validation. In this context, the present study aims at quantitative evaluation of the electrical properties of Fe/Sr co-doped biphasic calcium phosphate (BCP) samples and assessment of their cytocompatibility with epithelial (vero) cells. Sr/Fe co-doped BCPs were prepared by sol-gel synthesis technique, with different dopant concentration. Impact of co-doping on conductivity was assessed and interestingly an increase in conductivity with dopant amount was recorded in different co-doped BCPs. Cellular study showed the significant ( p = 0.01) increase in both cellular viability and functionality with increasing conductivity of samples. Higher epithelial cell adhesion indicates that (Sr/Fe) co-doped BCP would be favorable for faster epithelial sealing and also would reduce the chances of infection. Real-time PCR and immunofluorescence studies indicated that the expression of the epithelial marker (E-cadherin) significantly ( p = 0.01) increased in 10, 30 and 40 mol% co-doped samples in comparison to undoped BCP. In contrast to E-cadherin, fold change of β-catenin remains unchanged amongst the co-doped ceramics, implying the absence of tumorigenic potential of (Sr/Fe) co-doped BCP. In addition, immune-fluorescence signatures for cellular polarity are established from enhanced expression PARD3 protein, which has major relevance for cellular morphogenesis and cell division. Summarizing, the present study establishes the efficacy of Sr/Fe co-doped BCPs as a dental implant coating material and its ability to modulate vero cell functionality.
Collapse
Affiliation(s)
- Subhadip Basu
- 1 Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India
| | - Aritri Ghosh
- 2 Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Ananya Barui
- 2 Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, India
| | - Bikramjit Basu
- 1 Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India.,3 Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
20
|
Xu R, Hu X, Yu X, Wan S, Wu F, Ouyang J, Deng F. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int J Nanomedicine 2018; 13:5045-5057. [PMID: 30233172 PMCID: PMC6129016 DOI: 10.2147/ijn.s166661] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Selective laser melting (SLM) titanium is an ideal option to manufacture customized implants with suitable surface modification to improve its bioactivity. The peri-implant soft tissues form a protective tissue barrier for the underlying osseointegration. Therefore, original microrough SLM surfaces should be treated for favorable attachment of surrounding soft tissues. Material and methods In this study, anodic oxidation (AO) was applied on the microrough SLM titanium substrate to form TiO2 nanotube arrays. After that, calcium phosphate (CaP) nanoparticles were embedded into the nanotubes or the interval of nanotubes by electrochemical deposition (AOC). These two samples were compared to untreated (SLM) samples and accepted mechanically polished (MP) SLM titanium samples. Scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, surface roughness, and water contact angle measurements were used for surface characterization. The primary human gingival epithelial cells (HGECs) and human gingival fibroblasts (HGFs) were cultured for cell assays to determine adhesion, proliferation, and adhesion-related gene expressions. Results For HGECs, AOC samples showed significantly higher adhesion, proliferation, and adhesion-related gene expressions than AO and SLM samples (P<0.05) and similar exceptional ability in above aspects to MP samples. At the same time, AOC samples showed the highest adhesion, proliferation, and adhesion-related gene expressions for HGFs (P<0.05). Conclusion By comparison between each sample, we could confirm that both anodic oxidation and CaP nanoparticles had improved bioactivity, and their combined utilization may likely be superior to mechanical polishing, which is most commonly used and widely accepted. Our results indicated that creating appropriate micro-/nano-topographies can be an effective method to affect cell behavior and increase the stability of the peri-implant mucosal barrier on SLM titanium surfaces, which contributes to its application in dental and other biomedical implants.
Collapse
Affiliation(s)
- Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Xiucheng Hu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Xiaolin Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Shuangquan Wan
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Fan Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| | - Jianglin Ouyang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou, PR China.,Guangzhou Janus Biotechnology Co., Ltd, Chinese Academy of Sciences, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China, .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China,
| |
Collapse
|
21
|
Abdallah MN, Abughanam G, Tran SD, Sheikh Z, Mezour MA, Basiri T, Xiao Y, Cerruti M, Siqueira WL, Tamimi F. Comparative adsorption profiles of basal lamina proteome and gingival cells onto dental and titanium surfaces. Acta Biomater 2018; 73:547-558. [PMID: 29660511 DOI: 10.1016/j.actbio.2018.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/06/2018] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
Titanium (Ti) dental implants are susceptible to bacterial infections and failure due to lack of proper epithelial seal. Epithelial cells establish a strong epithelial seal around natural teeth by the deposition of basal lamina (BL) proteins that adsorb on the tooth surface. This seal can even be re-established onto cementum or dentin following injury or periodontal therapy. However, it is unclear how tooth surfaces promote this cell attachment and protein adsorption. Understanding the interactions between BL proteins and epithelial cells with dentin and Ti will facilitate the development of implant surfaces that promote the formation of an epithelial seal and improve the success of periodontal therapy and wound healing on natural teeth. To study these interactions, we used a surface proteomic approach to decipher the adsorption profile of BL proteins onto Ti and dentin, and correlated these adsorption profiles with in vitro interactions of human gingival fibroblasts and epithelial cells. Results showed that dentin adsorbed higher amounts of key BL proteins, particularly laminin and nidogen-1, and promoted more favorable interactions with epithelial cells than Ti. Next, dentin specimens were deproteinized or partially demineralized to determine if its mineral or protein component was responsible for BL adsorption and cell attachment. Deproteinized (mineral-rich) and partially demineralized (protein-rich) dentin specimens revealed BL proteins (i.e. laminin and nidogen-1) and epithelial cells interact preferentially with dentinal proteins rather than dentin mineral. These findings suggest that, unlike Ti, dentin and, in particular, dentinal proteins have a selective affinity to BL proteins that enhance epithelial cell attachment. STATEMENT OF SIGNIFICANCE It is remains unclear why natural teeth, unlike titanium dental implants, promote the formation of an epithelial seal that protects them against the external environment. This study used a surface screening approach to analyze the adsorption of proteins produced by epithelial tissues onto tooth-dentin and titanium surfaces, and correlate it with the behaviour of cells. This study shows that tooth-dentin, in particular its proteins, has a higher selective affinity to certain adhesion proteins, and subsequently allows more favourable interactions with epithelial cells than titanium. This knowledge could help in developing new approaches for re-establishing and maintaining the epithelial seal around teeth, and could pave the way for developing implants with surfaces that allow the formation of a true epithelial seal.
Collapse
|
22
|
Gu M, Lv L, Du F, Niu T, Chen T, Xia D, Wang S, Zhao X, Liu J, Liu Y, Xiong C, Zhou Y. Effects of thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates. Sci Rep 2018; 8:8141. [PMID: 29802306 PMCID: PMC5970187 DOI: 10.1038/s41598-018-26551-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
In recent years, dental implants have become the preferred approach for the restoration of missing teeth. At present, most dental implants are made of pure titanium, and are affected by peri-implantitis and bone resorption, which usually start from the implant neck, due to the complex environment in this region. To address these issues, in this study we modified the surface of titanium (Ti) implants to exploit the antibacterial and osteoinductive effects of single-layer graphene sheets. Chemical vapor deposition (CVD)-grown single-layer graphene sheets were transferred to titanium discs, and a method for improving the adhesion strength of graphene on Ti was developed due to compromised adhesion strength between graphene and titanium surface. A thermal treatment of 2 h at 160 °C was found to enhance the adhesion strength of graphene on Ti to facilitate clinical transformation. Graphene coatings of Ti enhanced cell adhesion and osteogenic differentiation, and imparted antibacterial activity to Ti substrate; these favorable effects were not affected by the thermal treatment. In summary, the present study elucidated the effects of a thermal treatment on the adhesion strength and osteoinductive activity of single-layer graphene sheets on titanium substrates.
Collapse
Affiliation(s)
- Ming Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Feng Du
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Tianxiao Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Dandan Xia
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Siyi Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Xiao Zhao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Jianzhang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Disease, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, PR China.
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Beijing, 100081, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Disease, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, PR China
| |
Collapse
|
23
|
Takahashi D, Suzuki H, Komori T. A clinical study of 103 dental implants in oral cancer patients after jaw resection. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2018. [DOI: 10.1016/j.ajoms.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kanazawa M, Atsuta I, Ayukawa Y, Yamaza T, Kondo R, Matsuura Y, Koyano K. The influence of systemically or locally administered mesenchymal stem cells on tissue repair in a rat oral implantation model. Int J Implant Dent 2018; 4:2. [PMID: 29332154 PMCID: PMC5767164 DOI: 10.1186/s40729-017-0112-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stem cells (MSCs) are used clinically in regenerative medicine. Our previous report showed systemically injected MSCs improved peri-implant sealing and accelerated tissue healing. However, the risks of systemic MSC administration, including lung embolism, must be considered; therefore, their local application must be assessed for clinical safety and efficacy. We investigated differences in treatment effect between local and systemic MSC application using a rat oral implantation model. METHODS Rat bone marrow-derived MSCs were isolated and culture-expanded. The rat's right maxillary first molars were extracted and replaced with experimental titanium implants. After 24 h, MSCs (1 × 106/ml) were systemically or locally injected into recipient rats via the tail vein (systemic group) or buccal subcutaneous tissue (local group), respectively. Rats treated in the absence of MSCs were included as a control (control group). The maxillary epithelium was assessed histologically after 4 weeks to evaluate laminin-332 (Ln-332) distribution and horseradish peroxidase invasion, as indicators of peri-implant epithelium (PIE) formation and PIE sealing to the implant surface, respectively. The effect of MSCs on rat oral epithelial cell (OEC) morphology was determined by coculture. RESULTS Systemic group MSCs accumulated early at the peri-implant mucosa, while local group MSCs were observed in various organs prior to later accumulation around the implant surface. PIE formation and Ln-332-positive staining at the implant interface were enhanced in the systemic group compared with the local and control groups. Furthermore, OEC adherence on implants was reduced in high-density compared with low-density MSC cocultures. CONCLUSIONS Local MSC injection was more ineffective than systemic MSC injection at enhancing PIE sealing around titanium implants. Thus, although local MSC administration has a wide range of applications, further investigations are needed to understand the exact cellular and molecular mechanisms of this approach prior to clinical use.
Collapse
Affiliation(s)
- Miya Kanazawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ikiru Atsuta
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell and Oral Anatomy, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryosuke Kondo
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuri Matsuura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
25
|
Abdallah MN, Badran Z, Ciobanu O, Hamdan N, Tamimi F. Strategies for Optimizing the Soft Tissue Seal around Osseointegrated Implants. Adv Healthc Mater 2017; 6. [PMID: 28960892 DOI: 10.1002/adhm.201700549] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Percutaneous and permucosal devices such as catheters, infusion pumps, orthopedic, and dental implants are commonly used in medical treatments. However, these useful devices breach the soft tissue barrier that protects the body from the outer environment, and thus increase bacterial infections resulting in morbidity and mortality. Such associated infections can be prevented if these devices are effectively integrated with the surrounding soft tissue, and thus creating a strong seal from the surrounding environment. However, so far, there are no percutaneous/permucosal medical devices able to prevent infection by achieving strong integration at the soft tissue-device interface. This review gives an insight into the current status of research into soft tissue-implant interface and the challenges associated with these interfaces. Biological soft/hard tissue interfaces may provide insights toward engineering better soft tissue interfaces around percutaneous devices. In this review, focus is put on the history and current findings as well as recent progress of the strategies aiming to develop a strong soft tissue seal around osseointegrated implants, such as orthopedic and dental implants.
Collapse
Affiliation(s)
- Mohamed-Nur Abdallah
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Division of Orthodontics; Faculty of Dentistry; Toronto University; Toronto M5G 1G6 ON Canada
| | - Zahi Badran
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Department of Periodontology (CHU/Rmes Inserm U1229/UIC11); Faculty of Dental Surgery; University of Nantes; Nantes 44042 France
| | - Ovidiu Ciobanu
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences; Faculty of Dentistry; Dalhousie University; Halifax B3H 4R2 NS Canada
| | - Faleh Tamimi
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| |
Collapse
|
26
|
Esfahanizadeh N, Motalebi S, Daneshparvar N, Akhoundi N, Bonakdar S. Morphology, proliferation, and gene expression of gingival fibroblasts on Laser-Lok, titanium, and zirconia surfaces. Lasers Med Sci 2016; 31:863-73. [DOI: 10.1007/s10103-016-1927-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/18/2016] [Indexed: 12/23/2022]
|
27
|
Oshiro W, Ayukawa Y, Atsuta I, Furuhashi A, Yamazoe J, Kondo R, Sakaguchi M, Matsuura Y, Tsukiyama Y, Koyano K. Effects of CaCl2 hydrothermal treatment of titanium implant surfaces on early epithelial sealing. Colloids Surf B Biointerfaces 2015; 131:141-7. [PMID: 25982317 DOI: 10.1016/j.colsurfb.2015.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 11/28/2022]
Abstract
Improvement of oral epithelial adhesion to titanium (Ti) may significantly enhance the efficacy of dental implants. We aimed to investigate whether calcium chloride (CaCl2) hydrothermally treated (HT) Ti could promote sealing of the peri-implant epithelium (PIE) around the implant. Right maxillary first molars were extracted from rats and replaced with either CaCl2-HT implants (Ca-HT group), distilled water-HT implants (DW-HT group), or untreated implants (Cont group). After 4 weeks, the implant-PIE interface of the Ca-HT group exhibited a band of immunoreactive laminin-332, similar to the tooth-junctional epithelium interface, which was absent in the Cont and DW-HT groups at the upper portion. We also investigated the effect of Ca-HT on the attachment of rat oral epithelial cells (OECs). OEC adherence onto Ca-HT Ti plates was stronger with higher expression levels of adhesion proteins compared with Cont and DW-HT groups. These results indicate that HT with CaCl2 improves the integration of soft tissue cells with the Ti implant at 4 weeks after implantation, which might facilitate the development of a soft tissue barrier around the implant.
Collapse
Affiliation(s)
- Wakana Oshiro
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | - Ikiru Atsuta
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jyunichi Yamazoe
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryosuke Kondo
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Mami Sakaguchi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuri Matsuura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Tsukiyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
28
|
Lee DW, Kim JG, Kim MK, Ansari S, Moshaverinia A, Choi SH, Ryu JJ. Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts. J Adv Prosthodont 2015; 7:138-45. [PMID: 25932312 PMCID: PMC4414944 DOI: 10.4047/jap.2015.7.2.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/03/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The objective of this study was to conduct an in vitro comparative evaluation of polished and laserdimpled titanium (Ti) surfaces to determine whether either surface has an advantage in promoting the attachment of epithelial-like cells and fibroblast to Ti. MATERIALS AND METHODS Forty-eight coin-shaped samples of commercially pure, grade 4 Ti plates were used in this study. These discs were cleaned to a surface roughness (Ra: roughness centerline average) of 180 nm by polishing and were divided into three groups: SM (n=16) had no dimples and served as the control, SM15 (n=16) had 5-µm dimples at 10-µm intervals, and SM30 (n=16) had 5-µm dimples at 25-µm intervals in a 2 × 4 mm(2) area at the center of the disc. Human gingival squamous cell carcinoma cells (YD-38) and human lung fibroblasts (MRC-5) were cultured and used in cell proliferation assays, adhesion assays, immunofluorescent staining of adhesion proteins, and morphological analysis by SEM. The data were analyzed statistically to determine the significance of differences. RESULTS The adhesion strength of epithelial cells was higher on Ti surfaces with 5-µm laser dimples than on polished Ti surfaces, while the adhesion of fibroblasts was not significantly changed by laser treatment of implant surfaces. However, epithelial cells and fibroblasts around the laser dimples appeared larger and showed increased expression of adhesion proteins. CONCLUSION These findings demonstrate that laser dimpling may contribute to improving the periimplant soft tissue barrier. This study provided helpful information for developing the transmucosal surface of the abutment.
Collapse
Affiliation(s)
- Dong-Woon Lee
- Department of Periodontology, Veterans Health Service Medical Center, Seoul, Republic of Korea; Department of Dentistry, Graduate School, Korea University, Seoul, Republic of Korea
| | - Jae-Gu Kim
- Nano-Convergence Mechanical System Research Division, Korea Institute of Machinery and Materials, Daejeon, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sahar Ansari
- Division of Periodontology, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Alireza Moshaverinia
- Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Seong-Ho Choi
- Department of Periodontology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Jae-Jun Ryu
- Department of Prosthodontics, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Yang WE, Lan MY, Lee SW, Chang JK, Huang HH. Primary human nasal epithelial cell response to titanium surface with a nanonetwork structure in nasal implant applications. NANOSCALE RESEARCH LETTERS 2015; 10:167. [PMID: 25977647 PMCID: PMC4420767 DOI: 10.1186/s11671-015-0849-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
In nasal reconstruction applications, the response of cells to titanium (Ti) implants is largely determined by the surface characteristics of the implant. This study investigated an electrochemical anodization surface treatment intended to improve the response of primary human nasal epithelial cells (HNEpC) to Ti surfaces in nasal implant applications. We used a simple and fast electrochemical anodization treatment, i.e., applying anodic current, to produce a titanium dioxide (TiO2) nanonetwork layer on the Ti surface with average lateral pore size below 100 nm, depending on the current applied. The TiO2 nanonetwork layer exhibited enhanced hydrophilicity and protein adsorption ability compared with untreated Ti surfaces. In addition, the spreading morphology, cytoskeletal arrangement, and proliferation of HNEpC on the nanonetwork layer indicated excellent cell response characteristics. This research advances our understanding regarding the means by which a TiO2 nanonetwork layer can improve the response of HNEpC to Ti surfaces in nasal implant applications.
Collapse
Affiliation(s)
- Wei-En Yang
- />Institute of Oral Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112 Taiwan
| | - Ming-Ying Lan
- />Department of Otolaryngology, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Road, Taipei, 112 Taiwan
- />School of Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112 Taiwan
| | - Sheng-Wei Lee
- />Institute of Materials Science and Engineering, National Central University, No. 300, Jhongda Road, Taoyuan, 320 Taiwan
| | - Jeng-Kuei Chang
- />Institute of Materials Science and Engineering, National Central University, No. 300, Jhongda Road, Taoyuan, 320 Taiwan
| | - Her-Hsiung Huang
- />Institute of Oral Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112 Taiwan
- />Department of Dentistry, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112 Taiwan
- />Graduate Institute of Basic Medical Science, China Medical University, No.91, Hsueh-Shih Road, Taichung, 404 Taiwan
- />Department of Medical Research, China Medical University Hospital, No.2, Yude Road, Taichung, 404 Taiwan
- />Department of Biomedical Informatics, Asia University, No.500, Lioufeng Road, Taichung, 413 Taiwan
- />Department of Stomatology, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Road, Taipei, 112 Taiwan
| |
Collapse
|
30
|
Kondo R, Atsuta I, Ayukawa Y, Yamaza T, Matsuura Y, Furuhashi A, Tsukiyama Y, Koyano K. Therapeutic interaction of systemically-administered mesenchymal stem cells with peri-implant mucosa. PLoS One 2014; 9:e90681. [PMID: 24651408 PMCID: PMC3961234 DOI: 10.1371/journal.pone.0090681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/04/2014] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES The objective of this study was to investigate the effect of systemically transplanted mesenchymal stem cells (MSCs) on the peri-implant epithelial sealing around dental implants. MATERIALS AND METHODS MSCs were isolated from bone marrow of donor rats and expanded in culture. After recipient rats received experimental titanium dental implants in the bone sockets after extraction of maxillary right first molars, donor rat MSCs were intravenously transplanted into the recipient rats. RESULTS The injected MSCs were found in the oral mucosa surrounding the dental implants at 24 hours post-transplantation. MSC transplantation accelerated the formation of the peri-implant epithelium (PIE)-mediated mucosa sealing around the implants at an early stage after implantation. Subsequently, enhanced deposition of laminin-332 was found along the PIE-implant interface at 4 weeks after the replacement. We also observed enhanced attachment and proliferation of oral mucous epithelial cells. CONCLUSION Systemically transplanted MSCs might play a critical role in reinforcing the epithelial sealing around dental implants.
Collapse
Affiliation(s)
- Ryosuke Kondo
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science Kyushu University, Fukuoka, Japan
| | - Yuri Matsuura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| | - Akihiro Furuhashi
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| | - Yoshihiro Tsukiyama
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science Kyushu University, Fukuoka, Japan
| |
Collapse
|