1
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
2
|
Zhang J, Wang J, You J, Qin X, Chen H, Hu X, Zhao Y, Xia Y. Surface demineralized freeze-dried bone allograft followed by reimplantation in a failed mandibular dental implant. Regen Biomater 2023; 11:rbad102. [PMID: 38173777 PMCID: PMC10761198 DOI: 10.1093/rb/rbad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
The removal of a failed implant with high torque causes significant damage to the surrounding tissue, compromising bone regeneration and subsequent osseointegration in the defect area. Here, we report a case of carrier screw fracture followed by immediate implant removal, bone grafting and delayed reimplantation. A dental implant with a fractured central carrier screw was removed using the bur-forceps technique. The resulting three-wall bone defect was filled with granular surface demineralized freeze-dried bone allograft (SD-FDBA). Cone-beam computerized tomography was performed at 1 week, 6 months and 15 months postoperatively and standardized for quantitative evaluation. The alveolar bone width and height at 15 months post-surgery were about 91% of the original values, with a slightly lower bone density, calculated using the gray value ratio. The graft site was reopened and was found to be completely healed with dense and vascularized bone along with some residual bone graft. Reimplantation followed by restoration was performed 8 months later. The quality of regenerated bone following SD-FDBA grafting was adequate for osseointegration and long-term implant success. The excellent osteogenic properties of SD-FDBA are attributed to its human origin, cortical bone-like structure, partly demineralized surfaces and bone morphogenetic protein-2-containing nature. Further investigation with more cases and longer follow-up was required to confirm the final clinical effect.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Jie Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Jiayi You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xuan Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Huimin Chen
- Department of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xiantong Hu
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, PR China
- State Key Laboratory of Military Stomatology, Xi'an 710032, PR China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, PR China
- State Key Laboratory of Military Stomatology, Xi'an 710032, PR China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| |
Collapse
|
3
|
Leblebicioglu B, Tatakis DN. Complications following alveolar ridge augmentation procedures. Periodontol 2000 2023; 93:221-235. [PMID: 37489632 DOI: 10.1111/prd.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/15/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
Oral rehabilitation through implant supported dental restorations often requires a ridge augmentation procedure (RAP) prior to implant fixture placement since tooth extraction/loss results in alveolar ridge deficiencies. Although RAP-related surgical techniques and biomaterials have been in practice for several decades, outcomes are not always predictable. Post-surgical complications experienced during the early or late wound healing phases may jeopardize the targeted ideal ridge dimensions, required for implant fixture placement, and may have other consequences, such as negatively impacting the patient's quality of life. This review describes reported post-surgical complications following RAP under the following subtitles: complications by tissue type, complications in function and aesthetics, complications by healing time, complications by biomaterial type, and complications by surgical protocol modalities. Specifically, RAP performed by using particulate bone graft substitutes and related complications are explored. Modalities developed to prevent/manage these complications are also discussed.
Collapse
Affiliation(s)
- Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Yu SH, Saleh MHA, Wang HL. Simultaneous or staged lateral ridge augmentation: A clinical guideline on the decision-making process. Periodontol 2000 2023; 93:107-128. [PMID: 37529966 DOI: 10.1111/prd.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Lateral ridge augmentation is a standard surgical procedure that can be performed prior to (staged) or simultaneously with implant placement. The decision between a simultaneous or staged approach involves considering multiple variables. This paper proposed a decision-making process that serves as a guideline for choosing the best treatment choice based on the available evidence and the author's clinical experience.
Collapse
Affiliation(s)
- Shan-Huey Yu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Private Practice, Vienna, Virginia, USA
| | - Muhammad H A Saleh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Calvo-Guirado JL, Cabo-Pastor MB, Martínez-Martínez F, Garcés-Villalá MÁ, de Carlos-Villafranca F, García-Carrillo N, Fernández-Domínguez M. The Use of Human Sterilized Crushed Tooth Particles Compared with BTCP Biomaterial and Empty Defects in Bone Formation inside Critical Rabbit Calvaria Sites. Bioengineering (Basel) 2023; 10:638. [PMID: 37370569 DOI: 10.3390/bioengineering10060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to assess the bone regeneration of critical-size defects in rabbit calvaria filled with freshly crushed extracted teeth, comparing them with BTCP biomaterial and empty sites. Materials and methods: Twenty-one female New Zealand rabbits were used in this study. Two critical-size defects 6 mm in size were created in the skull bone, each with a 3 mm separation between them. Three experimental groups were evaluated: Group A (human sterilized crushed teeth granules alone), Group B (Bioner Bone, Bioner Sitemas Implantológicos), and Group C (unfilled defects). The animals were sacrificed at 4 and 8 weeks. Evaluation of the samples involved histological and histomorphometric analyses with radiographic evaluation. The histological evaluation showed a higher volume reduction in Group A compared with Group B (p < 0.05) and Control. Group A showed the highest values for cortical closure and bone formation around the particles, followed by Group B and Group C (p < 0.05). Within the limitations of this animal study, we can conclude that the use of human tooth particles leads to increased bone formation and reduced connective tissue in critical-size defects in rabbit calvaria when compared to BTCP biomaterial. The calvarial model is a robust base for the evaluation of different biomaterials.
Collapse
Affiliation(s)
| | | | - Francisco Martínez-Martínez
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | | | | | | | | |
Collapse
|