1
|
Prato A, Fernando Santos E, Mendes Ferreira H, Akemi Oi C, Santos do Nascimento F, Rantala MJ, Krams I, Rodrigues de Souza A. Immune response in paper wasp workers: Task matters more than age. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104629. [PMID: 38430966 DOI: 10.1016/j.jinsphys.2024.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Workers of social hymenopterans (ants, bees and wasps) display specific tasks depending on whether they are younger or older. The relative importance of behavior and age in modulating immune function has seldom been addressed. We compared the strength of encapsulation-melanization immune response (hereafter melanotic encapsulation) in paper wasps displaying age polyethism or experimentally prevented from behavioral specialization. Foragers of Polybia paulista had higher melanotic encapsulation than guards, regardless of their age. Nevertheless, melanotic encapsulation decreased with age when wasps were prevented from behavioral specialization. Thus, in this species, worker melanotic encapsulation seems more sensitive to task than age. Foraging is considered one of the riskier behaviors in terms of pathogen exposure, so upregulating melanotic encapsulation in foragers can possibly improve both individual and colony-level resistance against infections.
Collapse
Affiliation(s)
- Amanda Prato
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil.
| | - Eduardo Fernando Santos
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, Brasil
| | | | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium; Center for Biodiversity and Environmental Research, Department of Genetics and Evolution, UCL, London, United Kingdom
| | - Fábio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | | | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Latvia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, Latvia; Institute of Ecology and Earth Sciences, University of Tartu, Estonia
| | - André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
2
|
Bourke AFG. Conflict and conflict resolution in the major transitions. Proc Biol Sci 2023; 290:20231420. [PMID: 37817595 PMCID: PMC10565403 DOI: 10.1098/rspb.2023.1420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Conflict and conflict resolution have been argued to be fundamental to the major transitions in evolution. These were key events in life's history in which previously independently living individuals cooperatively formed a higher-level individual, such as a multicellular organism or eusocial colony. Conflict has its central role because, to proceed stably, the evolution of individuality in each major transition required within-individual conflict to be held in check. This review revisits the role of conflict and conflict resolution in the major transitions, addressing recent work arguing for a minor role. Inclusive fitness logic suggests that differences between the kin structures of clones and sexual families support the absence of conflict at the origin of multicellularity but, by contrast, suggest that key conflicts existed at the origin of eusociality. A principal example is conflict over replacing the founding queen (queen replacement). Following the origin of each transition, conflict remained important, because within-individual conflict potentially disrupts the attainment of maximal individuality (organismality) in the system. The conclusion is that conflict remains central to understanding the major transitions, essentially because conflict arises from differences in inclusive fitness optima while conflict resolution can help the system attain a high degree of coincidence of inclusive fitness interests.
Collapse
Affiliation(s)
- Andrew F. G. Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
3
|
Bouchebti S, Domer A, Bodner L, Levin E. Passive heat diffusion in nests with downward-facing cells: Implications for early colony development in social wasps. J Therm Biol 2023; 116:103657. [PMID: 37473462 DOI: 10.1016/j.jtherbio.2023.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Social insects employ a variety of active and passive mechanisms for nest thermoregulation. Many social wasp species exhibit a particular nest-architecture by building their nests with cells facing downward. By using thermal imaging to characterize the heat diffusion throughout Oriental hornet nests from different angular positions, we show that the heat diffusion along the vertical gradient of nests is more efficient when the cell openings face downward than when facing sideways or upward, demonstrating the efficiency of this specific architecture in increasing the nest temperature. This passive thermoregulation mechanism could be especially important during the initial stage of the colony, when the queen is alone to rear her first brood. Among the social insects that build cells to raise their brood, we suggest that wasps can take advantage of the thermal benefits of this particular architecture of their cells as, unlike bees, they do not usually store food in them.
Collapse
Affiliation(s)
- Sofia Bouchebti
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Adi Domer
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Levona Bodner
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Levin
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
4
|
Smith ML, Loope KJ, Chuttong B, Dobelmann J, Makinson JC, Saga T, Petersen KH, Napp N. Honey bees and social wasps reach convergent architectural solutions to nest-building problems. PLoS Biol 2023; 21:e3002211. [PMID: 37498968 PMCID: PMC10374112 DOI: 10.1371/journal.pbio.3002211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The hexagonal cells built by honey bees and social wasps are an example of adaptive architecture; hexagons minimize material use, while maximizing storage space and structural stability. Hexagon building evolved independently in the bees and wasps, but in some species of both groups, the hexagonal cells are size dimorphic-small worker cells and large reproductive cells-which forces the builders to join differently sized hexagons together. This inherent tiling problem creates a unique opportunity to investigate how similar architectural challenges are solved across independent evolutionary origins. We investigated how 5 honey bee and 5 wasp species solved this problem by extracting per-cell metrics from 22,745 cells. Here, we show that all species used the same building techniques: intermediate-sized cells and pairs of non-hexagonal cells, which increase in frequency with increasing size dimorphism. We then derive a simple geometric model that explains and predicts the observed pairing of non-hexagonal cells and their rate of occurrence. Our results show that despite different building materials, comb configurations, and 179 million years of independent evolution, honey bees and social wasps have converged on the same solutions for the same architectural problems, thereby revealing fundamental building properties and evolutionary convergence in construction behavior.
Collapse
Affiliation(s)
- Michael L Smith
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Kevin J Loope
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Jana Dobelmann
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - James C Makinson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Tatsuya Saga
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Kirstin H Petersen
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, United States of America
| | - Nils Napp
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
5
|
Sumner S, Favreau E, Geist K, Toth AL, Rehan SM. Molecular patterns and processes in evolving sociality: lessons from insects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220076. [PMID: 36802779 PMCID: PMC9939270 DOI: 10.1098/rstb.2022.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 02/21/2023] Open
Abstract
Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour-superorganismality-among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Katherine Geist
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Amy L. Toth
- Department of Ecology, Evolution and Organismal Biology, and Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Sandra M. Rehan
- Department of Biology, York University, Toronto, Canada M3J 1P3
| |
Collapse
|
6
|
Wyatt CDR, Bentley MA, Taylor D, Favreau E, Brock RE, Taylor BA, Bell E, Leadbeater E, Sumner S. Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps. Nat Commun 2023; 14:1046. [PMID: 36828829 PMCID: PMC9958023 DOI: 10.1038/s41467-023-36456-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
A key mechanistic hypothesis for the evolution of division of labour in social insects is that a shared set of genes co-opted from a common solitary ancestral ground plan (a genetic toolkit for sociality) regulates caste differentiation across levels of social complexity. Using brain transcriptome data from nine species of vespid wasps, we test for overlap in differentially expressed caste genes and use machine learning models to predict castes using different gene sets. We find evidence of a shared genetic toolkit across species representing different levels of social complexity. We also find evidence of additional fine-scale differences in predictive gene sets, functional enrichment and rates of gene evolution that are related to level of social complexity, lineage and of colony founding. These results suggest that the concept of a shared genetic toolkit for sociality may be too simplistic to fully describe the process of the major transition to sociality.
Collapse
Affiliation(s)
- Christopher Douglas Robert Wyatt
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| | - Michael Andrew Bentley
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Daisy Taylor
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Emeline Favreau
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Ryan Edward Brock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
| | - Benjamin Aaron Taylor
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK
| | - Emily Bell
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, Dept Genetics, Evolution & Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Juvenile hormone regulates reproductive physiology and the production of fertility cues in the swarm-founding wasp Polybia occidentalis. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
da Silva RC, Prato A, Tannure-Nascimento I, Akemi Oi C, Wenseleers T, Nascimento F. Cuticular hydrocarbons as caste-linked cues in Neotropical swarm-founding wasps. PeerJ 2022; 10:e13571. [PMID: 35694385 PMCID: PMC9186331 DOI: 10.7717/peerj.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Wasps (Vespidae) are important organisms to understand the evolution of social behaviour. Wasps show different levels of sociality, which includes solitary to highly eusocial organisms. In social insect species, queens and workers differ in physiology and morphology. The Neotropical swarm-founding wasps (Epiponini) show a variety of caste syndromes. In this clade, the caste-flexibility is a unique characteristic, in which workers can become queens and swarm to start a new nest. The investigation of the caste system comparing several Epiponini species show a clear-cut morphological distinction between queens and workers, with a morphological continuum between queens and workers. However, whether cuticular hydrocarbons (CHCs) are used as cues for caste recognition in swarm-founding wasps is still unknown. We studied whether CHCs may display caste-linked differences in eleven species of Epiponini wasps and if CHCs differences would follow morphological patterns. Our results suggest that queens and workers of Epiponini wasps are chemically different from each other at two levels, qualitatively and quantitatively, or merely quantitatively. This variation seems to exist regardless of their morphological traits and may be useful to help us understanding how chemical communication evolved differently in these species.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Prato
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ivelize Tannure-Nascimento
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil,Departamento de Morfologia e Fisiologia Animal, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, Katholieke Universiteit Leuven, Leuven, Belgium,Centre for Biodiversity and Environment Research, University College London, University of London, London, United Kingdom
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Fabio Nascimento
- Departamento de Biologia/Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
da Silva M, Noll FB, Billen J. Histology and ultrastructure of glands associated with the sting apparatus of the swarm-founding wasp Protopolybia exigua (Hymenoptera: Vespidae: Polistinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 68:101166. [PMID: 35525205 DOI: 10.1016/j.asd.2022.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Social insects present a great diversity of exocrine glands, which are linked to fundamental roles of social life, and their morphological characterization represents the first step toward the knowledge of their function. We here describe the exocrine glands present in the sting apparatus of queens and workers of the wasp Protopolybia exigua. Histological analysis of serial sections under light microscopy revealed a glandular epithelium in the spiracular plate, the quadrate plate, and the gonostyli, while the last two in addition also contain clusters of class-3 cells. A big cluster of class-3 cells was also found in the oblong plate of some workers and queens. These findings reveal that a variety of glands, in addition to the common venom gland and Dufour gland, are present in association with the sting apparatus, of which three glands are novel reports for the exocrine repertoire of social insects. The position of the glands suggests a role in lubrication to provide mobility of the sting and venom ejection and/or participation in alarm behavior, while a function related to reproduction is also possible. The peculiar characteristics displayed by swarm-founding wasps are linked with exocrine gland secretions, making their investigation in Epiponini wasps a vast and interesting field.
Collapse
Affiliation(s)
- Marjorie da Silva
- Universidade Estadual Paulista, Depto. Ciências Biológicas, Cristóvão Colombo 2265, 15054-000, São José Do Rio Preto, SP, Brazil.
| | - Fernando Barbosa Noll
- Universidade Estadual Paulista, Depto. Ciências Biológicas, Cristóvão Colombo 2265, 15054-000, São José Do Rio Preto, SP, Brazil.
| | - Johan Billen
- KU Leuven, Zoological Institute, Naamsestraat 59, Box 2466, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Alternative Nesting Strategies of Polistine Wasps in a Subtropical Locale. INSECTS 2022; 13:insects13010053. [PMID: 35055896 PMCID: PMC8777775 DOI: 10.3390/insects13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/04/2022]
Abstract
Phylogenetic studies suggest that historically all paper wasps (Vespidae: Polistinae) in North America have tropical origins, but some species have adapted to survive temperate conditions. Subtropical climates, which are intermediate between temperate and tropical, allow a unique opportunity to study ancestral traits which can be retained or lost within populations, and ultimately elucidate the process of social wasp evolution. We investigated the phenology of paper wasps at study sites in subtropical Baton Rouge, USA, through nest searching and monitoring of nest parameters throughout the warm season (March-October). Across the year, two periods of nest initiation occurred: from March-May (early season nests, i.e., before the summer solstice), and from July-September (late season nests, after the solstice). We observed 240 Polistes nests from six species, of which 50.8% were initiated in early season and 49.2% in late season. In contrast, Mischocyttarus mexicanus rarely built late season nests and had longer early season colony duration than Polistes bellicosus and P. dorsalis, which built more nests in the late season than early. Across all species, late season nests had significantly shorter colony duration (~87.6 days) than early season nests (~166 days), and only P. bellicosus had fewer adults at peak population in late season nests than in early season nests. Results indicate both a bivoltine colony cycle in Polistes of subtropical climates, as well as differences in nesting strategies between genera.
Collapse
|