1
|
Sadat-Marashi Z, Fujioka-Kobayashi M, Katagiri H, Lang NP, Saulacic N. Higher solubility and lower onset temperature of protein denaturation increase the osteoconductive capacity of collagen membranes: A preclinical in vivo study. Clin Oral Implants Res 2024. [PMID: 39166760 DOI: 10.1111/clr.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Collagen membranes are extensively used for guided bone regeneration procedures, primarily for horizontal bone augmentation. More recently, it has been demonstrated that collagen membranes promote bone regeneration. Present study aimed at assessing if structural modifications of collagen membranes may enhance their osteoconductive capacity. METHODS Twenty-four adult Wistar rats were used. Bilateral calvaria defects with a diameter of 5 mm were prepared and covered with prototypes of collagen membranes (P1 or P2). The P1 membrane (positive control) presented a lower onset temperature of protein denaturation and a higher solubility than the P2 membrane (test). The contralateral defects were left uncovered (NC). After 1 and 4 weeks, the animals were euthanized. A microcomputed tomography analysis of the harvested samples was performed within and above the bony defect. Undecalcified ground sections were subjected to light microscopy and morphometric analysis. RESULTS Bone formation was observed starting from the circumferential borders of the defects in all groups at 1-week of healing. The foci of ossification were observed at the periosteal and dura mater sites, with signs of collagen membrane mineralization. However, there was no statistically significant difference between the groups. At 4 weeks, remnants of the collagen fibers were embedded in the newly formed bone. In the P2 group, significantly more bone volume, more new bone, and marrow spaces compared to the NC group were observed. Furthermore, the P2 group showed more bone volume ectocranially then the P1 group. CONCLUSIONS Bone formation subjacent to a P2 membrane was superior than subjacent to the P1 membrane and significantly better compared to the control. Modifications of the physico-chemical properties may enhance the osteoconductive competence of collagen membranes, supporting bone formation outside the bony defects.
Collapse
Affiliation(s)
- Zahra Sadat-Marashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Niklaus P Lang
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Faculty of Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Shanbhag S, Kampleitner C, Sanz-Esporrin J, Lie SA, Gruber R, Mustafa K, Sanz M. Regeneration of alveolar bone defects in the experimental pig model: A systematic review and meta-analysis. Clin Oral Implants Res 2024; 35:467-486. [PMID: 38450852 DOI: 10.1111/clr.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Pigs are emerging as a preferred experimental in vivo model for bone regeneration. The study objective was to answer the focused PEO question: in the pig model (P), what is the capacity of experimental alveolar bone defects (E) for spontaneous regeneration in terms of new bone formation (O)? METHODS Following PRISMA guidelines, electronic databases were searched for studies reporting experimental bone defects or extraction socket healing in the maxillae or mandibles of pigs. The main inclusion criteria were the presence of a control group of untreated defects/sockets and the assessment of regeneration via 3D tomography [radiographic defect fill (RDF)] or 2D histomorphometry [new bone formation (NBF)]. Random effects meta-analyses were performed for the outcomes RDF and NBF. RESULTS Overall, 45 studies were included reporting on alveolar bone defects or extraction sockets, most frequently in the mandibles of minipigs. Based on morphology, defects were broadly classified as 'box-defects' (BD) or 'cylinder-defects' (CD) with a wide range of healing times (10 days to 52 weeks). Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 50% RDF (36.87%-63.15%) and 43.74% NBF (30.47%-57%) in BD, and 44% RDF (16.48%-71.61%) and 39.67% NBF (31.53%-47.81%) in CD, which were similar to estimates of socket-healing [48.74% RDF (40.35%-57.13%) and 38.73% NBF (28.57%-48.89%)]. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION A substantial body of literature revealed a high capacity for spontaneous regeneration in experimental alveolar bone defects of (mini)pigs, which should be considered in future studies of bone regeneration in this animal model.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Javier Sanz-Esporrin
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Stein-Atle Lie
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Sourvanos D, Zhu TC, Dimofte A, Busch TM, Lander B, Burrell JC, Neiva R, Fiorellini JP. A novel investigational preclinical model to assess fluence rate for dental oral craniofacial tissues. Photodiagnosis Photodyn Ther 2024; 46:104015. [PMID: 38373469 PMCID: PMC11139582 DOI: 10.1016/j.pdpdt.2024.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE Photodynamic Therapy (PDT) and Photobiomodulation (PBM) are recognized for their potential in treating head and neck conditions. The heterogeneity of human tissue optical properties presents a challenge for effective dosimetry. The porcine mandible cadaver serves as an excellent model and has several similarities to human tissues of the dental oral craniofacial complex. This study aims to validate a novel modeling system that will help refine PDT and PBM dosimetry for the head and neck region. METHODS AND MATERIALS Light transmission was analyzed through several tissue combinations at distances of 2 mm to 10 mm. Maximum light fluence rates (mW/cm2) were compared across tissue types to reveal the effects of tissue heterogeneity. RESULTS The study revealed that light fluence is affected by tissue composition, with dentin/enamel showing reduced transmission and soft tissue regions exhibiting elevated values. The porcine model has proven to be efficient in mimicking human tissue responses to light, enabling the potential to optimize future protocols. CONCLUSION The porcine mandible cadaver is a novel model to understand the complex interactions between light and tissue. This study provides a foundation for future investigations into dosimetry optimization for PDT and PBM.
Collapse
Affiliation(s)
- Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA.
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Bradley Lander
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Justin C Burrell
- Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA; Department of Oral and Maxillofacial Surgery, Hospital of the University of Pennsylvania and University of Pennsylvania School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michal J. Crescenz Veterans Affairs Medical Center, PA, USA
| | - Rodrigo Neiva
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Joseph P Fiorellini
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
4
|
Miron RJ. Optimized bone grafting. Periodontol 2000 2024; 94:143-160. [PMID: 37610202 DOI: 10.1111/prd.12517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
Bone grafting is routinely performed in periodontology and oral surgery to fill bone voids. While autogenous bone is considered the gold standard because of its regenerative properties, allografts and xenografts have more commonly been utilized owing to their availability as well as their differential regenerative/biomechanical properties. In particular, xenografts are sintered at high temperatures, which allows for their slower degradation and resorption rates and/or nonresorbable features. As a result, clinicians have combined xenografts with other classes of bone grafts (most notably allografts and autografts in various ratios) for procedures requiring better long-term stability, such as contour grafting, sinus elevation procedures, and vertical bone augmentations. This review addresses the regenerative properties of each class of bone grafts and then highlights the importance of understanding each of their biomechanical and regenerative properties for clinical applications, including extraction site management, contour augmentation, sinus grafting, and horizontal and vertical augmentation procedures. Thereafter, an introduction toward the novel production of nonresorbable bone allografts (NRBAs) via high-temperature sintering is presented. These NRBAs not only pose the advantage of being more biocompatible than xenografts owing to their origin (human vs. animal bone) but also display nonresorbable properties similar to those of xenografts. Thus, while packaging allografts with xenografts in premixtures specific to various clinical indications has never been permitted owing to cross-species contamination and FDA/CE requirements, the discovery and production of NRBAs allows premixing with standard allografts in various ratios without regulatory restrictions. Therefore, premixtures of allografts with NRBAs can be produced in various ratios for specific indications (e.g., a 1:1 ratio similar to an allograft/xenograft mixture for sinus grafting) without the need for purchasing separate classes of bone grafts. This optimized form of bone grafting could theoretically provide clinicians more precise ratios without the need to purchase separate bone grafts. This review highlights the future potential for simplified and optimized bone grafting in periodontology and implant dentistry.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Panahipour L, Abbasabadi AO, Wagner A, Kratochwill K, Pichler M, Gruber R. Bone Allograft Acid Lysates Change the Genetic Signature of Gingival Fibroblasts. Int J Mol Sci 2023; 24:16181. [PMID: 38003371 PMCID: PMC10671348 DOI: 10.3390/ijms242216181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bone allografts are widely used as osteoconductive support to guide bone regrowth. Bone allografts are more than a scaffold for the immigrating cells as they maintain some bioactivity of the original bone matrix. Yet, it remains unclear how immigrating cells respond to bone allografts. To this end, we have evaluated the response of mesenchymal cells exposed to acid lysates of bone allografts (ALBA). RNAseq revealed that ALBA has a strong impact on the genetic signature of gingival fibroblasts, indicated by the increased expression of IL11, AREG, C11orf96, STC1, and GK-as confirmed by RT-PCR, and for IL11 and STC1 by immunoassays. Considering that transforming growth factor-β (TGF-β) is stored in the bone matrix and may have caused the expression changes, we performed a proteomics analysis, TGF-β immunoassay, and smad2/3 nuclear translocation. ALBA neither showed detectable TGF-β nor was the lysate able to induce smad2/3 translocation. Nevertheless, the TGF-β receptor type I kinase inhibitor SB431542 significantly decreased the expression of IL11, AREG, and C11orf96, suggesting that other agonists than TGF-β are responsible for the robust cell response. The findings suggest that IL11, AREG, and C11orf96 expression in mesenchymal cells can serve as a bioassay reflecting the bioactivity of the bone allografts.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
6
|
Chang SH, Hsiao HY, Chen YH, Cheng MH, Liu JW, Huang HJ, Chou YT, Amer TAM, Vijayaraghavan P, Palanisamy S, Wang YM, Lu TT. Conjugation of bone grafts with NO-delivery dinitrosyl iron complexes promotes synergistic osteogenesis and angiogenesis in rat calvaria bone defects. J Mater Chem B 2023; 11:8007-8019. [PMID: 37530140 DOI: 10.1039/d3tb00587a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(μ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH]- thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (β-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.
Collapse
Affiliation(s)
- Shih-Hao Chang
- Department of Periodontics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan 33302, Taiwan
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Hui-Yi Hsiao
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ming-Huei Cheng
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Jia-Wei Liu
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hsiao-Jo Huang
- Department of Periodontics, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Center of Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Tarik Abdelkareem Mostafa Amer
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Priya Vijayaraghavan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sathyadevi Palanisamy
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
7
|
Flavonoids from Dalbergia cochinchinensis: Impact on osteoclastogenesis. J Dent Sci 2023; 18:112-119. [PMID: 36643234 PMCID: PMC9831843 DOI: 10.1016/j.jds.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Dalbergia cochinchinensi has been widely used in traditional medicine because of its flavonoids. This study examined which components in D. cochinchinensis were capable of reducing or even stimulating the formation of bone-resorbing osteoclasts. Materials and methods We have isolated subfamilies of chalcones (isoliquiritigenin, butein), flavones (7-hydroxy-6-methoxyflavone) and neoflavanoids (5-methoxylatifolin), and performed an in vitro bioassay on osteoclastogenesis. The flavonoids were tested for their potential to change the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK) in murine bone marrow cultures being exposed to RANKL, M-CSF and TGF-β1 using RT-PCR, histochemistry and immunoassay. Results We could confirm that isoliquiritigenin and butein significantly lower the expression of TRAP and CTSK in this setting. Moreover, histochemistry supported the decrease of TRAP by the chalcones. We further observed a trend towards an increase of osteoclastogenesis in the presence of 5-methoxylatifolin and 7-hydroxy-6-methoxyflavone, particular in bone marrow cultures being exposed to RANKL and M-CSF. Consistently, the anti-inflammatory activity was restricted to isoliquiritigenin and butein in murine RAW 264.7 inflammatory macrophages stimulated by lipopolysaccharide (LPS). With respect to osteoblastogenesis, neither of the flavonoids but butyrate, a short chain fatty acid, increased the osteogenic differentiation marker alkaline phosphatase activity in ST2 murine mesenchymal cells. Conclusion We have identified two flavonoids from D. cochinchinensis with a potential pro-osteoclastogenic activity and confirm the anti-osteoclastogenic activity of isoliquiritigenin and butein.
Collapse
|
8
|
Kuchler U, Heimel P, Stähli A, Josef Strauss F, Luza B, Gruber R. Impact of DBBM Fragments on the Porosity of the Calvarial Bone: A Pilot Study on Mice. MATERIALS 2020; 13:ma13214748. [PMID: 33114211 PMCID: PMC7660694 DOI: 10.3390/ma13214748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
Deproteinized bovine bone mineral (DBBM) is brittle and can break into fragments. Here, we examined whether DBBM fragments have an impact on mice calvarial bone during bone augmentation. DBBM was either randomly crushed (DBBM fragments) or left undisturbed (DBBM granules). Then, DBBM fragments or original DBBM granules were placed onto calvarial bone in 20 BALB/c mice. Following random allocation, ten mice received DBBM fragments and ten mice received original DBBM granules. After fourteen days of healing, micro computed tomography (micro-CT) and histological analysis of the augmented sites were performed. The primary outcome was the porosity of the calvarial bone. The micro-CT analysis revealed that DBBM fragments failed to significantly change the porosity of the calvarial bone as compared with original DBBM granules, despite the slightly higher bone resorption in the DBBM fragment group, 10.3% (CI 6.3–11.6) versus 6.1% (CI 4.1–7.8, p = 0.355), respectively. The cortical bone volume was not altered by DBBM fragments as compared with original DBBM granules, i.e., 79.0% (CI 78.9–81.2) versus 81.5% (CI 80.1–83.3, p = 0.357), respectively. The DBBM fragment group revealed similar bone thickness values as compared with the DBBM granules group, i.e., 0.26 mm (CI 0.23–0.29) versus 0.25 mm (CI 0.22–0.27, p = 0.641), respectively. The histological evaluation supported the micro-CT observations, displaying minor signs of porosity and resorption. The particle-size distribution analysis confirmed a shift towards smaller particle sizes in the DBBM fragment group. These findings suggest that DBBM fragments behave similarly to original DBBM granules in terms of bone morphological changes at augmented sites.
Collapse
Affiliation(s)
- Ulrike Kuchler
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (B.L.)
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Alexandra Stähli
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.S.); (F.J.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Franz Josef Strauss
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.S.); (F.J.S.)
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago 8380544, Chile
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Bernadette Luza
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (B.L.)
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.S.); (F.J.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +43-699-107-18-472
| |
Collapse
|
9
|
Cellular responses to deproteinized bovine bone mineral biofunctionalized with bone-conditioned medium. Clin Oral Investig 2020; 25:2159-2173. [PMID: 32870390 PMCID: PMC7966141 DOI: 10.1007/s00784-020-03528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES The aim of the study was to investigate whether the osteoinductive properties of bone-conditioned medium (BCM) harvested from cortical bone chips within a clinically relevant short-term period can enhance the biologic characteristics of deproteinized bovine bone mineral (DBBM) in vitro. MATERIALS AND METHODS To assess the biofunctionalization of DBBM, the adhesive, proliferative, and differentiation properties of mesenchymal stromal ST2, pre-osteoblastic MC3T3-E1, and primary bone-derived cells grown on BCM-coated DBBM were examined by crystal violet staining of adherent cells, BrdU ELISA, and qRT-PCR, respectively. RESULTS BCM extracted within 20 min or 24 h in either Ringer's solution (BCM-RS) or RS mixed with autologous serum (BCM-RS + S) increased the adhesive properties of all three cell types seeded on DBBM. The 20-min BCM-RS preparation appeared more potent than the 24-h preparation. BCM-RS made within 20 min or 24 h had strong pro-proliferative effects on all cell types grown on DBBM. RS + S alone exhibited a considerable pro-proliferative effect, suggesting an impact of the serum on cellular growth. DBBM coated with BCM-RS or BCM-RS + S, made within 20 min or 24 h each, caused a significant induction of osteogenic differentiation marker expression with a higher potency of the BCM-RS + S. Finally, a strong additive effect of fresh bone chips combined with BCM-coated DBBM on the osteogenic differentiation of the three cell types was observed. CONCLUSIONS Altogether, the data strongly support the biofunctionalization of DBBM with BCM extracted within a clinically relevant time window of 20 min. CLINICAL RELEVANCE Pre-activation of non-osteoinductive biomaterials with BCM, prepared from autologous bone chips during a guided bone regeneration (GBR) procedure, bears the potential of an optimal treatment modality for bone defects in daily practice.
Collapse
|
10
|
Gaur V, Doshi AG, Palka LR. Mandibular reconstruction using single piece zygomatic implant in conjunction with a reinforcing Fibular Graft Union: A case report. Int J Surg Case Rep 2020; 73:347-354. [PMID: 32745726 PMCID: PMC7398898 DOI: 10.1016/j.ijscr.2020.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022] Open
Abstract
Presenting to our knowledge, for the first time in literature, a case report on the long term follow-up of an implant retained fixed prosthesis on free fibular reconstruction with a single piece zygomatic implant and single piece bicortical implant via a flapless approach and immediate functional rehabilitation. The technique involved the concept of "Remote Bone Anchorage" in conjunction with the union of grafted free fibula flap with the native mandible. It was facilitated with a single piece zygomatic implant engaged in the mandible and splinted with single piece implants on the grafted fibula as needed for prosthetic functional reconstruction. The author has reported a unique concept of immediate functional rehabilitation in the fibular graft therefore providing additional splinting of the vascularized free fibula to the mandible by splinting them with single piece zygomatic cortical implant.
Collapse
Affiliation(s)
- Vivek Gaur
- Jaipur Dental College, Maharaj Vinayak Global University, Jaipur, India.
| | | | | |
Collapse
|
11
|
Strauss FJ, Kuchler U, Kobatake R, Heimel P, Tangl S, Gruber R. Acid bone lysates reduce bone regeneration in rat calvaria defects. J Biomed Mater Res A 2020; 109:659-665. [PMID: 32608132 PMCID: PMC7984281 DOI: 10.1002/jbm.a.37050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Acid bone lysates (ABLs) represent the growth factors and other molecules released during autologous graft resorption. However, the impact of these bone-derived growth factors on the healing of bone defects has not yet been investigated. The aim of the present study was, therefore, to examine the impact of ABLs adsorbed to collagen membranes on bone regeneration. To this end, in 16 female Sprague Dawley rats, a standardized 5-mm-diameter critical size defect on the calvarial bone was created. The defects were covered with collagen membranes that had been soaked either in serum-free media or ABLs followed by lyophilization. After a healing period of 4 weeks, micro-computed tomography (μCT) and histological analyses by means of undecalcified thin ground sections were performed. μCT analysis of the inner 4 mm of the calvaria defect showed a greater bone defect coverage in the control group when compared to ABL group, 29.8% (confidence interval [CI]: 17.7-50.3) versus 5.6% (CI: 1.0-29.8, p = .03), respectively. Moreover, we found significantly more absolute bone volume (BV) in the control group when compared to ABL group, 0.59 mm3 (CI: 0.27-1.25) versus 0.07 mm3 (CI: 0.06-0.59, p = .04), respectively. Histomorphometry confirmed these findings with a relative BV in the central compartment of 14.1% (CI: 8.4-20.6) versus 5.6% (CI: 3.4-7.9, p = .004), respectively. These findings indicate that bone-derived growth factors contained in ABLs are able to attenuate bone regeneration within collagen membranes.
Collapse
Affiliation(s)
- Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ulrike Kuchler
- Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reiko Kobatake
- Department of Advanced Prosthodontics, Hiroshima University, Higashihiroshima, Japan
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stefan Tangl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Fernandes D, Resende C, Cavalcanti J, Liu D, Elias C. Biocompatibility of bioabsorbable Mg-Ca alloys with rare earth elements addition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:134. [PMID: 31797113 DOI: 10.1007/s10856-019-6330-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The objectives were to investigate the mechanical strength and biocompatibility of Mg2Ca2Gd and Mg1Ca2Nd (wt%) alloys developed for biomedical application as implantable bioabsorbable devices. Samples were implanted in New-Zealand rabbits tibia for 3, 6 and 8 weeks and compatibility analysis involved whole blood test, biochemistry, histopathology, histology, and radiographs. Refinement in grains were observed in Mg2Ca2Gd alloy; and Mg5Gd, Mg41Nd5, α-Mg and Mg2Ca phases were identified. Polarization curves revealed easier oxidation of Mg2Ca2Gd alloy, smaller values of corrosion rate and a higher polarization resistance of Mg1Ca2Nd. Adequate compatibility of both alloys was identified with pre-osteoblast stem cells. Red and white cells stayed compatible with reference ranges. Enzymes from liver and kidneys stayed at regular values and samples from kidneys and liver tissues presented similar organization to control animals. Histological displays from implantation sites disclosed well-structured tissues with evidences of bone cells activities compatible with the new bone tissues observed. Radiographs from tibias did not revealed relevant gas pockets. Mg2Ca2Gd alloy demonstrated faster degradation. Adequate biocompatibility was observed in Mg-Ca alloys with RE addition, being potential candidates for development of metallic implantable bioabsorbable devices.
Collapse
Affiliation(s)
- Daniel Fernandes
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 22290-270, Brazil.
- School of Engineering, University of South Australia, V Building, Office V1-17w15, Mawson Lakes, SA, 5095, Australia.
| | - Celso Resende
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 22290-270, Brazil
| | - Jacqueline Cavalcanti
- College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610-0126, USA
| | - Dexue Liu
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Carlos Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, 22290-270, Brazil
| |
Collapse
|
13
|
Deluiz D, Delcroix GJR, D'Ippolito G, Grau-Monge C, Bonnin-Marquez A, Reiner T, Tinoco EMB, Amadeu T, Pires FR, Schiller PC. Human Bone Marrow-Derived Mesenchymal Stromal Cell-Seeded Bone Biomaterial Directs Fast and Superior Mandibular Bone Augmentation in Rats. Sci Rep 2019; 9:11806. [PMID: 31413279 PMCID: PMC6694159 DOI: 10.1038/s41598-019-48236-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/29/2019] [Indexed: 01/11/2023] Open
Abstract
Atrophic maxillary ridges present a challenge in the field of oral implantology. Autologous bone is still considered the gold standard grafting material, but the increased morbidity and surgical complications represent a major drawback for its use. The aim of this study was to assess the efficacy of an off-the-shelf cell-seeded bone biomaterial for mandibular bone augmentation, compared to its acellular counterpart. We used a rat model to test the osteogenic properties of bone marrow-derived mesenchymal stromal cells (MSCs)-seeded bone microparticles compared to acellular bone microparticles alone. Rats were euthanized at 4 and 8 weeks, and results analyzed using micro-CT imaging, histology (H&E, Masson’s Trichrome), histomorphometry and immunohistology (Tartrate-Resistant Acid Phosphatase-TRAP, Osteocalcin and human specific anti-mitochondria antibodies). Micro-CT analysis demonstrated that the cell-seeded biomaterial achieved significantly more bone volume formation at 4 weeks (22.75 ± 2.25 mm3 vs 12.34 ± 2.91 mm3, p = 0.016) and at 8 weeks (64.95 ± 5.41 mm3 vs 42.73 ± 10.58 mm3, p = 0.029), compared to the acellular bone microparticles. Histology confirmed that the cell-seeded biomaterial was almost completely substituted at 8 weeks, in opposition to the acellular biomaterial group. Immunohistochemical analysis showed a significantly higher number of TRAP and Osteocalcin positive cells at 4 weeks in the cell-seeded group compared to the acellular group, thereby demonstrating a higher rate of bone remodeling in the presence of MSCs. The grafted human cells remained viable and were detected up to at least 8 weeks, as observed using the human specific anti-mitochondria antibody. This off-the-shelf material available in unlimited quantities could therefore represent a significant advance in the field of mandibular bone augmentation by providing a larger volume of new bone formation in a shorter time.
Collapse
Affiliation(s)
- Daniel Deluiz
- Department of Periodontology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA. .,Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Gaëtan J-R Delcroix
- Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA.,Nova Southeastern University, College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Gianluca D'Ippolito
- Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA.,Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, FL, USA
| | - Cristina Grau-Monge
- Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA.,Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Bonnin-Marquez
- Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Teresita Reiner
- Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Eduardo M B Tinoco
- Department of Periodontology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thaís Amadeu
- Department of Pathology and Laboratories, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabio R Pires
- Department of Oral Pathology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paul C Schiller
- Geriatric Research, Education, and Clinical Center, and Research Service, Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA. .,Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Biochemistry & Molecular Biology and Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
14
|
Rasch A, Naujokat H, Wang F, Seekamp A, Fuchs S, Klüter T. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS One 2019; 14:e0218404. [PMID: 31220118 PMCID: PMC6586299 DOI: 10.1371/journal.pone.0218404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
In an ever-aging society the demand for bone-defect filling grafts continues to gain in importance. While autologous grafting still prevails as the gold standard, allografts and xenografts present viable alternatives with promising results. Physiochemical properties of a graft strongly depend on the processing method such as the decellularization protocol. In addition, the physiochemical characteristics are critical factors for a successful integration of the graft after the implantation and might influence mesenchymal stem cell function in therapeutic approaches combining grafts and autologous mesenchymal stem cells (MSCs). Several decellularization methods have been proposed, however it still remains unclear which method results in favorable physiochemical properties or might be preferred in stem cell applications. In the first part of this study we compared two decellularization approaches resulting in chemically processed allografts (CPAs) or sonication-based processed allografts (SPAs). Each decellularization approach was compared for its decellularization efficacy and its influence on the grafts' surface texture and composition. In the second part of this study biocompatibility of grafts was assessed by testing the effect of extraction medium on MSC viability and comparing them to commercially available allografts and xenografts. Additionally, grafts' performance in terms of MSC functionality was assessed by reseeding with MSCs pre-differentiated in osteogenic medium and determining cell adhesion, proliferation, as well as alkaline phosphatase (ALP) activity and the degree of mineralization. In summary, results indicate a more effective decellularization for the SPA approach in comparison to the CPA approach. Even though SPA extracts induced a decrease in MSC viability, MSC performance after reseeding was comparable to commercially available grafts based on DNA quantification, alkaline phosphatase activity and quantification of mineralization. Commercial Tutoplast allografts showed overall the best effects on MSC functionality as indicated by extraction biocompatibility testing as well as by comparing proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Alexander Rasch
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Fanlu Wang
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
- * E-mail:
| | - Tim Klüter
- Experimental Trauma Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
15
|
Shi A, Heinayati A, Bao D, Liu H, Ding X, Tong X, Wang L, Wang B, Qin H. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res Ther 2019; 10:172. [PMID: 31196174 PMCID: PMC6567469 DOI: 10.1186/s13287-019-1281-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clinically, for stem cell-based therapy (SCBT), autologous stem cells are considered better than allogenic stem cells because of little immune rejection and no risk of communicable disease infection. However, severe maxillofacial bone defects restoration needs sufficient autologous stem cells, and this remains a challenge worldwide. Human gingival mesenchymal stem cells (hGMSCs) derived from clinically discarded, easily obtainable, and self-healing autologous gingival tissues, have higher proliferation rate compared with autologous bone marrow mesenchymal stem cells (hBMSCs). But for clinical bone regeneration purpose, GMSCs have inferior osteogenic differentiation capability. In this study, a TGF-β signaling inhibitor SB431542 was used to enhance GMSCs osteogenesis in vitro and to repair minipig severe maxillofacial bone defects. METHODS hGMSCs were isolated and cultured from clinically discarded gingival tissues. The effects of SB431542 on proliferation, apoptosis, and osteogenic differentiation of hGMSCs were analyzed in vitro, and then, SB431542-treated hGMSCs composited with Bio-Oss® were transplanted into immunocompromised mice subcutaneously to explore osteogenic differentiation in vivo. After that, SB431542-treated autologous pig GMSCs (pGMSCs) composited with Bio-Oss® were transplanted into circular confined defects (5 mm × 12 mm) in minipigs maxillary to investigate severe bone defect regeneration. Minipigs were sacrificed at 2 months and nude mice at 8 weeks to retrieve specimens for histological or micro-CT or CBCT analysis. Effects of SB431542 on TGF-β and BMP signaling in hGMSCs were investigated by Western Blot or qRT-PCR. RESULTS One micromolar of SB431542 treatment induced a robust osteogenesis of hGMSCs in vitro, without adverse effect on apoptosis and growth. In vivo, 1 μM SB431542 treatment also enabled striking osteogenesis of hGMSCs subcutaneously in nude mice and advanced new bone formation of pGMSCs in minipig maxillary bone defect model. In addition, SB431542-treated hGMSCs markedly increased bone-related proteins expression, and BMP2 and BMP4 gene expression. Conversely, SMAD3 protein-dependent TGF-β signal pathway phosphorylation was decreased. CONCLUSIONS Our study show that osteogenic differentiation of GMSCs treated with TGF-β signaling inhibitor SB431542 was increased, and SB431542-treated autologous pig GMSCs could successfully repair minipig severe maxillofacial bone defects. This preclinical study brings about a promising large bone regeneration therapeutic potential of autologous GMSCs induced by SB431542 in clinic settings.
Collapse
Affiliation(s)
- Anyuan Shi
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
- Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Aerali Heinayati
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
- Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Dongyu Bao
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Huifen Liu
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Xiaochen Ding
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Xin Tong
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Liudi Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Haiyan Qin
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| |
Collapse
|
16
|
Bone-Conditioned Medium Obtained From Calvaria, Mandible, and Tibia Cause an Equivalent TGF-β1 Response In Vitro. J Craniofac Surg 2018; 29:553-557. [DOI: 10.1097/scs.0000000000004251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
17
|
Sampatanukul T, Serichetaphongse P, Sampatanukul P, Pimkhaokham A. Bony spicules trapped in peri-implant soft tissue: a common unrecognized finding. Clin Case Rep 2017; 5:1856-1861. [PMID: 29152286 PMCID: PMC5676264 DOI: 10.1002/ccr3.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022] Open
Abstract
According to the study, there were unexpected tiny bone spicules being inspected in peri‐implant soft tissue. These displaced autogenous bone chips were probably presented when preparing implant sites. The displaced bone spicules seemed not induced significant inflammatory reactions; on contrary, defects of specimens and dissolving bone spicules pictures were demonstrated.
Collapse
Affiliation(s)
- Teeratida Sampatanukul
- Esthetic Restorative and Implant Dentistry Faculty of Dentistry Chulalongkorn University Bangkok Thailand
| | | | - Pichet Sampatanukul
- Department of Pathology Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Atiphan Pimkhaokham
- Department of Oral and Maxillofacial Surgery Faculty of Dentistry Chulalongkorn University Bangkok Thailand
| |
Collapse
|
18
|
Troedhan A, Mahmoud ZT, Wainwright M, Khamis MM. Cutting bone with drills, burs, lasers and piezotomes: A comprehensive systematic review and recommendations for the clinician. ACTA ACUST UNITED AC 2017. [DOI: 10.17352/2455-4634.000028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Liang C, Lin X, Wang SL, Guo LH, Wang XY, Li J. Osteogenic potential of three different autogenous bone particles harvested during implant surgery. Oral Dis 2017. [PMID: 28644543 DOI: 10.1111/odi.12704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim was to compare the osteoblast activity and osteogenic potential of autogenous bone particles harvested using three different techniques and determine the most advantageous method of collecting autogenous bone particles. SUBJECTS AND METHODS Bone particles were harvested from 20 patients during dental implant surgery using bone scraping, low-speed drilling and bone trap filtering. After the osteoblasts were cultured, cell proliferation, migration, mineralization, transcription of osteogenesis-related genes, secretion of osteogenesis-related proteins and osteoinductive protein content in the bone particle matrix were evaluated. RESULTS Osteoblast activity and osteogenic potential were higher in bone samples harvested by scraper or low-speed drilling than in samples harvested by bone trap filter. Although these parameters were slightly lower in the low-speed drilling group than in the scraper group, significant differences were found only in bone Gla protein levels. However, the levels of osteoinductive proteins in the bone particle matrix were significantly higher in the low-speed drilling group than in the scraper group. CONCLUSIONS Low-speed drilling is a recommendable and effective technique for collecting autogenous bone particles. In implant operations, low-speed drilling can be considered the first-line option, and if the quantity of harvested bone is insufficient, bone shavings obtained by the scraper may be considered.
Collapse
Affiliation(s)
- C Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - X Lin
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - S-L Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - L-H Guo
- Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - X-Y Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - J Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Gruber R, Stadlinger B, Terheyden H. Cell-to-cell communication in guided bone regeneration: molecular and cellular mechanisms. Clin Oral Implants Res 2016; 28:1139-1146. [PMID: 27550738 DOI: 10.1111/clr.12929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Abstract
This overview provides insights into the molecular and cellular mechanisms involved in guided bone regeneration, in particular focusing on aspects presented in the 3D movie, Cell-To-Cell Communication in Guided Bone Regeneration. The information presented here is based almost exclusively on genetic mouse models in which single genes can be deleted or overexpressed, even in a specific cell type. This information needs to be extrapolated to humans and related to aspects relevant to graft consolidation under the clinical parameters of guided bone regeneration. The overview follows the ground tenor of the Cell-To-Cell Communication series and focuses on aspects of cell-to-cell communication in bone regeneration and guided bone regeneration. Here, we discuss (1) the role of inflammation during bone regeneration, including (2) the importance of the fibrin matrix, and (3) the pleiotropic functions of macrophages. We highlight (4) the origin of bone-forming osteoblasts and bone-resorbing osteoclasts as well as (5) what causes a progenitor cell to mature into an effector cell. (6) We touch on the complex bone adaptation and maintenance after graft consolidation and (7) how osteocytes control this process. Finally, we speculate on (8) how barrier membranes and the augmentation material can modulate graft consolidation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
| | - Hendrik Terheyden
- Department of Oral & Maxillofacial Surgery, Red Cross Hospital, Kassel, Germany
| |
Collapse
|
21
|
Nakahara K, Haga-Tsujimura M, Sawada K, Kobayashi E, Mottini M, Schaller B, Saulacic N. Single-staged vs. two-staged implant placement using bone ring technique in vertically deficient alveolar ridges - Part 1: histomorphometric and micro-CT analysis. Clin Oral Implants Res 2016; 27:1384-1391. [DOI: 10.1111/clr.12751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Ken Nakahara
- Advanced Research Center; School of Life Dentistry at Niigata, The Nippon Dental University; Niigata Japan
| | - Maiko Haga-Tsujimura
- Department of Histology; School of Life Dentistry at Niigata, The Nippon Dental University; Niigata Japan
| | - Kosaku Sawada
- Advanced Research Center; School of Life Dentistry at Niigata, The Nippon Dental University; Niigata Japan
| | - Eizaburo Kobayashi
- Department of Oral and Maxillofacial Surgery; School of Life Dentistry at Niigata, The Nippon Dental University; Niigata Japan
| | - Matthias Mottini
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| | - Nikola Saulacic
- Department of Cranio-Maxillofacial Surgery, Inselspital; Bern University Hospital and University of Bern; Bern Switzerland
| |
Collapse
|
22
|
Caballé-Serrano J, Schuldt Filho G, Bosshardt DD, Gargallo-Albiol J, Buser D, Gruber R. Conditioned medium from fresh and demineralized bone enhances osteoclastogenesis in murine bone marrow cultures. Clin Oral Implants Res 2015; 27:226-32. [PMID: 25754222 DOI: 10.1111/clr.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Osteoclasts rapidly form on the surface of bone chips at augmentation sites. The underlying molecular mechanism, however, is unclear. Soluble factors released from bone chips in vitro have a robust impact on mesenchymal cell differentiation. Whether these soluble factors change the differentiation of hematopoietic cells into osteoclasts remains unknown. METHODS Osteoclastogenesis, the formation of tartrate-resistant acid phosphatase-positive multinucleated cells, was studied with murine bone marrow cultures exposed to RANKL and M-CSF, and conditioned medium from fresh (BCM) and demineralized bone matrix (DCM). Histochemical staining, gene and protein expression, as well as viability assays were performed. RESULTS This study shows that BCM had no impact on osteoclastogenesis. However, when BCM was heated to 85°C (BCMh), the number of tartrate-resistant acid phosphatase-positive multinucleated cells that developed in the presence of RANKL and M-CSF approximately doubled. In line with the histochemical observations, there was a trend that BCMh increased expression of osteoclast marker genes, in particular the transcription factor c-fos. The expression of c-fos was significantly reduced by the TGF-β receptor I antagonist SB431542. DCM significantly stimulated osteoclastogenesis, independent of thermal processing. CONCLUSIONS These data demonstrate that activated BCM by heat and DBM are able to stimulate osteoclastogenesis in vitro. These in vitro results support the notion that the resorption of autografts may be supported by as yet less defined paracrine mechanisms.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Guenther Schuldt Filho
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Implant Dentistry, School of Dentistry, Universidade Federal de Santa Catarina Florianopolis, Florianópolis, Brazil
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jordi Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Oral Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Chen X, Zhao Y, Geng S, Miron RJ, Zhang Q, Wu C, Zhang Y. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. Int J Nanomedicine 2015; 10:839-46. [PMID: 25653525 PMCID: PMC4309792 DOI: 10.2147/ijn.s69001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. PATIENTS AND METHODS To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect. PIB nanogels and PIB nanogels/B-MBG composites were respectively implanted into ovariectomized rats with critical-sized femur defects following treatment periods of 2, 4, and 8 weeks post-implantation. RESULTS Results from the present study demonstrate that PIB nanogels/B-MBG composites showed greater improvement in mechanical strength when compared to PIB nanogels alone. In vivo, hematoxylin and eosin staining revealed significantly more newly formed bone in defects containing PIB nanogels/B-MBG composite scaffolds when compared to PIB nanogels alone. Tartrate-resistant acid phosphatase-positive staining demonstrated that both scaffolds were degraded over time and bone remodeling occurred in the surrounding bone defect as early as 4 weeks post-implantation. CONCLUSION The results from the present study indicate that PIB nanogels are a potential bone tissue engineering biomaterial able to treat defects of irregular shapes and deformities as an injectable, thermoresponsive, biocompatible hydrogel which undergoes rapid thermal gelation once body temperature is reached. Furthermore, its combination with B-MBG scaffolds improves the mechanical properties and ability to promote new bone formation when compared to PIB nanogels alone.
Collapse
Affiliation(s)
- Xiaohui Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China ; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shinan Geng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Qiao Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, People's Republic of China ; Department of Dental Implantology, School and Hospital of Stomatology, Wuhan University, People's Republic of China
| |
Collapse
|
24
|
Brolese E, Buser D, Kuchler U, Schaller B, Gruber R. Human bone chips release of sclerostin and FGF-23 into the culture medium: an in vitro pilot study. Clin Oral Implants Res 2014; 26:1211-4. [PMID: 24888411 DOI: 10.1111/clr.12432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Signaling molecules derived from osteocytes have been proposed as a mechanism by which autografts contribute to bone regeneration. However, there have been no studies that determined the role of osteocytes in bone grafts. MATERIAL AND METHOD Herein, it was examined whether bone chips and demineralized bone matrix release sclerostin and FGF-23, both of which are highly expressed by osteocytes. RESULTS Bone grafts from seven donors were placed in culture medium. Immunoassay showed that bone chips released sclerostin (median 1.0 ng/ml) and FGF-23 (median 9.8 relative units/ml) within the first day, with declining levels overtime. Demineralized bone matrix also released detectable amounts of sclerostin into culture medium, while FGF-23 remained close to the detection limit. In vitro expanded isolated bone cells failed to release detectable amounts of sclerostin and FGF-23. CONCLUSION These results suggest that autografts but also demineralized bone matrix can release signaling molecules that are characteristically produced by osteocytes.
Collapse
Affiliation(s)
- Eliane Brolese
- Department of Cranio-Maxillofacial Surgery, Inselspital, University of Bern, Bern, Switzerland.,Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulrike Kuchler
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Benoit Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, University of Bern, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|