1
|
Sadeghian Dehkord E, De Carvalho B, Ernst M, Albert A, Lambert F, Geris L. Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models. Mater Today Bio 2024; 26:101100. [PMID: 38854953 PMCID: PMC11157282 DOI: 10.1016/j.mtbio.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models. Methods The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes. Results A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength. Conclusion The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Bruno De Carvalho
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
| | - Adelin Albert
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
- Department of Public Health Sciences, University of Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
| |
Collapse
|
2
|
Calvo-Guirado JL, Cabo-Pastor MB, Martínez-Martínez F, Garcés-Villalá MÁ, de Carlos-Villafranca F, García-Carrillo N, Fernández-Domínguez M. The Use of Human Sterilized Crushed Tooth Particles Compared with BTCP Biomaterial and Empty Defects in Bone Formation inside Critical Rabbit Calvaria Sites. Bioengineering (Basel) 2023; 10:638. [PMID: 37370569 DOI: 10.3390/bioengineering10060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to assess the bone regeneration of critical-size defects in rabbit calvaria filled with freshly crushed extracted teeth, comparing them with BTCP biomaterial and empty sites. Materials and methods: Twenty-one female New Zealand rabbits were used in this study. Two critical-size defects 6 mm in size were created in the skull bone, each with a 3 mm separation between them. Three experimental groups were evaluated: Group A (human sterilized crushed teeth granules alone), Group B (Bioner Bone, Bioner Sitemas Implantológicos), and Group C (unfilled defects). The animals were sacrificed at 4 and 8 weeks. Evaluation of the samples involved histological and histomorphometric analyses with radiographic evaluation. The histological evaluation showed a higher volume reduction in Group A compared with Group B (p < 0.05) and Control. Group A showed the highest values for cortical closure and bone formation around the particles, followed by Group B and Group C (p < 0.05). Within the limitations of this animal study, we can conclude that the use of human tooth particles leads to increased bone formation and reduced connective tissue in critical-size defects in rabbit calvaria when compared to BTCP biomaterial. The calvarial model is a robust base for the evaluation of different biomaterials.
Collapse
Affiliation(s)
| | | | - Francisco Martínez-Martínez
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | | | | | | | | |
Collapse
|
3
|
Anderson M, Dubey N, Bogie K, Cao C, Li J, Lerchbacker J, Mendonça G, Kauffmann F, Bottino MC, Kaigler D. Three-dimensional printing of clinical scale and personalized calcium phosphate scaffolds for alveolar bone reconstruction. Dent Mater 2022; 38:529-539. [PMID: 35074166 PMCID: PMC9016367 DOI: 10.1016/j.dental.2021.12.141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Alveolar bone defects can be highly variable in their morphology and, as the defect size increases, they become more challenging to treat with currently available therapeutics and biomaterials. This investigation sought to devise a protocol for fabricating customized clinical scale and patient-specific, bioceramic scaffolds for reconstruction of large alveolar bone defects. METHODS Two types of calcium phosphate (CaP)-based bioceramic scaffolds (alginate/β-TCP and hydroxyapatite/α-TCP, hereafter referred to as hybrid CaP and Osteoink™, respectively) were designed, 3D printed, and their biocompatibility with alveolar bone marrow stem cells and mechanical properties were determined. Following scaffold optimization, a workflow was developed to use cone beam computed tomographic (CBCT) imaging to design and 3D print, defect-specific bioceramic scaffolds for clinical-scale bone defects. RESULTS Osteoink™ scaffolds had the highest compressive strength when compared to hybrid CaP with different infill orientation. In cell culture medium, hybrid CaP degradation resulted in decreased pH (6.3) and toxicity to stem cells; however, OsteoInk™ scaffolds maintained a stable pH (7.2) in culture and passed the ISO standard for cytotoxicity. Finally, a clinically feasible laboratory workflow was developed and evaluated using CBCT imaging to engineer customized and defect-specific CaP scaffolds using OsteoInk™. It was determined that printed scaffolds had a high degree of accuracy to fit the respective clinical defects for which they were designed (0.27 mm morphological deviation of printed scaffolds from digital design). SIGNIFICANCE From patient to patient, large alveolar bone defects are difficult to treat due to high variability in their complex morphologies and architecture. Our findings shows that Osteoink™ is a biocompatible material for 3D printing of clinically acceptable, patient-specific scaffolds with precision-fit for use in alveolar bone reconstructive procedures. Collectively, emerging digital technologies including CBCT imaging, 3D surgical planning, and (bio)printing can be integrated to address this unmet clinical challenge.
Collapse
Affiliation(s)
- Margaret Anderson
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Faculty of Dentistry, National University of Singapore, Singapore
| | - Kath Bogie
- Case Western Reserve University, Cleveland, OH, USA
| | - Chen Cao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Junying Li
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Frederic Kauffmann
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Ramanathan M, Tiwari RK, Mohan SP, Shankar DP, Bagadia RK, Varma PRH, Fernandez FB, Babu SS. Utility of Chitra-HASi Granules in Cystic Defects of the Maxillofacial Region: A Pilot Study. J Pharm Bioallied Sci 2021; 13:S772-S777. [PMID: 34447199 PMCID: PMC8375829 DOI: 10.4103/jpbs.jpbs_816_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Cystic defects that are critical sized or larger require bone replacement strategies. However, due to inherent disadvantages of the various types of grafts, none of the available materials are best suited for these defects. Among the alloplastic materials, hydroxyapatite (HA)-based grafts are the most popular, due to their osteoconductive nature and resemblance to mineral bone. The aim of the study was to assess the utility of the novel material “Chitra-HASi” as a bone substitute in the maxillofacial region. Materials and Methods: In a single-arm, prospective study, patients with radicular and dentigerous cysts were included and the minimum defect size was standardized at 20 × 20 mm or above. The Chitra–HASi material was developed by a wet precipitation technique and adopted for use following multiple in vitro and in vivo studies, confirming its safety and biocompatibility profile. All cysts underwent enucleation, followed by peripheral ostectomy and apicectomy of the teeth involved. The HASi graft was packed inside the cystic defect in a granular form and covered with a mucoperiosteal flap. Panoramic radiographs were taken preoperatively and at 3, 6, and 12 months postoperatively. Results: Twenty-three patients were included in the study, of which only 10 patients could be followed up for 12 months after graft placement. The mean preoperative bone density was found to be 14.9% ± 4.97 (standard deviation), whereas the postoperative 3-month, 6-month, and 12-month densities had a mean difference of −11.3%, −22.9%, and −37.3%, respectively, and the differences were statistically significant. Minor complications such as sinus formation (n = 7) and extrusion of granules (n = 4) were noted, which were managed conservatively. Only two patients required graft removal secondary to infection, leading to a persistent sinus tract. Conclusion: The results of the study suggest that Chitra–HASi granules show potential as an alternative to other bone substitutes. The addition of silica to the porous HA material offers superior strength characteristics and needs long-term evaluation to assess its stability in large cystic defects.
Collapse
Affiliation(s)
- Manikandhan Ramanathan
- Department of Oral and Maxillofacial Surgery, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India.,Meenakshi Cleft and Craniofacial Centre, Meenakshi Academy of Higher Education and Research (Deemed-to-be University), Chennai, Tamil Nadu, India
| | - Raj Kumar Tiwari
- Department of Oral and Maxillofacial Surgery, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India.,Department of Oral and Maxillofacial Surgery, Ex-servicemen Contributory Health Scheme (ECHS), Sagar, Madhya Pradesh, India
| | - Sunil Paramel Mohan
- Department of Oral Pathology, Sree Anjaneya Institute of Dental Sciences, Atholi, Calicut, Kerala, India
| | - Dayasankar Prabhu Shankar
- Department of Oral and Maxillofacial Surgery, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Ritvi K Bagadia
- Meenakshi Cleft and Craniofacial Centre, Meenakshi Academy of Higher Education and Research (Deemed-to-be University), Chennai, Tamil Nadu, India
| | - P R Harikrishna Varma
- Division of Bioceramics, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Francis Boniface Fernandez
- Division of Bioceramics, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - S Suresh Babu
- Division of Bioceramics, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC, de Vries RBM, Habibović P, Jansen JA, van den Beucken JJJP. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 2020; 8:4792-4809. [PMID: 32729591 DOI: 10.1039/d0bm00599a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, yet. Consequently, we performed a systematic review using the available literature regarding the effect of bioinorganic supplementation in CaP-based biomaterials on new bone formation and material degradation in preclinical animal bone defect models and studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial on bone formation or material degradation. Results show that bioinorganic supplementation increases new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13-1.73). Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In general, material degradation was slightly hindered by bioinorganic supplementation (mean difference [MD]: 0.84%, CI: 0.01-1.66), with the exception of strontium that significantly enhanced degradation. Overall, bioinorganic supplementation represents an effective approach to enhance the biological performance of CaP-based bone substitutes.
Collapse
|
6
|
Lillis T, Veis A, Sakellaridis N, Tsirlis A, Dailiana Z. Effect of clopidogrel in bone healing-experimental study in rabbits. World J Orthop 2019; 10:434-445. [PMID: 31908992 PMCID: PMC6937425 DOI: 10.5312/wjo.v10.i12.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed drug for prevention of myocardial infarction and stroke in patients at risk. It inhibits thrombus formation via inhibition of the P2Y12 purinergic receptor on platelets, which is important in their activation by ADP. However, the P2Y12 receptor has also been found to be expressed in both osteoblasts and osteoclasts. Accumulated evidence suggests that purinergic receptors regulate important functions of bone turnover. Previous studies on the effect of clopidogrel on bone metabolism indicated potential harmful effects, but their results remain conflicting. Thus, clopidogrel treatment may affect bone healing, but it has not yet been studied. AIM To evaluate if continuous perioperative clopidogrel treatment has any negative effect on bone healing in the rabbit calvarial defect model. METHODS Sixteen male white New Zealand rabbits were randomly assigned in two groups: One group received daily 3 mg/kg of clopidogrel per os and the other group received the vehicle alone for a week prior to the surgical procedures; the treatments were continued for another 6 wk postoperatively. The surgical procedures included generation of two circular calvarial defects 11 mm in diameter in every animal. After the 6-wk period of healing, postmortem radiographic and histomorphometric evaluation of the defects was performed. RESULTS Both the surgical procedures and the postoperative period were uneventful and well tolerated by all the animals, without any surgical wound dehiscence, signs of infection or other complication. New bone was formed either inwards from the defect margins or in the central portion of the defect as separated bony islets. While defect healing was still incomplete in both groups, the clopidogrel group had significantly improved radiographic healing scores. Moreover, the histomorphometric analysis showed that bone regeneration (%) was 28.07 ± 7.7 for the clopidogrel group and 19.47 ± 4.9 for the control group, showing a statistically significant difference between them (P = 0.018). Statistically significant difference was also found in the defect bridging (%), i.e. 72.17 ± 21.2 for the clopidogrel group and 41.17 ± 8.5 for the control group, respectively (P = 0.004), whereas there was no statistical difference in bone tissue density between the groups. CONCLUSION Our results indicate that maintenance of perioperative clopidogrel treatment does not negatively affect bone healing but rather promotes it. Further research is needed in order to find useful applications of this finding.
Collapse
Affiliation(s)
- Theodoros Lillis
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Alexander Veis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Nikolaos Sakellaridis
- Department of Clinical Pharmacology, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Anastasios Tsirlis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Zoe Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
7
|
Fernández-Bodereau E, Dedossi G, Ortega Asencio V, Fernández-Domínguez M, Gehrke SA, Aragoneses JM, Calvo-Guirado JL. Comparison of Different Bone Filling Materials and Resorbable Membranes by Means of Micro-Tomography. A Preliminary Study in Rabbits. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1197. [PMID: 31013766 PMCID: PMC6514859 DOI: 10.3390/ma12081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022]
Abstract
The purpose of this work was to evaluate the behavior of different membranes and bone filling materials used to fill critical defects in rabbit calvaria. Four defects were prepared in the cranial calvaria of female rabbits. They were randomly divided into three subgroups according to the type of barrier membrane to be used. Four animals carried cross-linked bovine collagen membranes (Mem-Lok, Bio-Horizons, Birmingham, AL, USA)), four human fascia lata membranes (Tissue, Inbiomed SA, Córdoba, Argentina) and four human chorioamniotic membranes (Tissue. Inbiomed SA, Córdoba, Argentina). The defects were filled with the deproteinized bovine bone particulate Bio-Oss® (Geistlich-Pharma AG, Wolhusen, Switzerland), with particulate human hydroxyapatite MinerOss® (Bio-Horizons, Birmingham, AL, USA), with particulate dental material (Tissue Bank Foundation, Inbiomed S.A., Córdoba, Argentina), and the last one was left without the addition of filler material. In the first group of four specimens, a resorbable cross-linked bovine collagen membrane was placed over the skull and defects, without additional fixing. In the second group, a human fascia lata membrane was placed, without additional fixing. In the third group, a human chorioamniotic membrane was placed, without additional fixing. The animals were sacrificed at 4 and 8 weeks. The highest percentages of relative radiological density (average) were recorded considering the amnio-chorionic membranes (83.63%) followed by collagen (81.44%) and finally the fascia lata membranes (80.63%), but the differences were not statistically significant (p > 0.05). The sites grafted with a decellularized tooth (96.83%) and Bio-Oss (88.42%), recorded the highest percentages of radiological density but did not differ significantly from each other (subset 2). The three membranes used did not show statistical differences between them, in any of the two time periods used. There were statistical differences between the filling materials evidencing the presence of a large quantity of calcified material in the defects treated with particulate tooth and deproteinized bovine bone and while smaller amounts of calcified material were registered in the case of defects treated with human hydroxyapatite and those that were not treated.
Collapse
Affiliation(s)
| | - Guillermo Dedossi
- Department of Prothodontics, Universidad Nacional de Córdoba, Córdoba 5100, Argentine.
| | | | | | | | - Juan Manuel Aragoneses
- Department of Dental Research in Universidad Federico Henriquez y Carvajal (UFHEC), Santo Domingo 10107, Dominican Republic.
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Católica San Antonio de Murcia (UCAM), 30107 Murcia, Spain.
| |
Collapse
|
8
|
Zeng JH, Qiu P, Xiong L, Liu SW, Ding LH, Xiong SL, Li JT, Xiao ZB, Zhang T. Bone repair scaffold coated with bone morphogenetic protein-2 for bone regeneration in murine calvarial defect model: Systematic review and quality evaluation. Int J Artif Organs 2019; 42:325-337. [PMID: 30905250 DOI: 10.1177/0391398819834944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To systematically assess the effects of hydroxyapatite bone repair scaffold coated with bone morphogenetic protein-2 on murine calvarial defect models and to determine the quality of studies according to the Animal Research Reporting in In Vivo Experiments guidelines. Internet search was performed in duplicate using PubMed, MEDLINE, Ovid and Embase databases (without restrictions on publication date). The Animal Research Reporting in In Vivo Experiments guidelines were used to evaluate the quality of selected studies. Following screening, 12 studies were eligible for the review. Studies with average quality coefficients predominated (66.67%), followed by poor (25%) and excellent (8.33%) quality coefficients. Minimum quality scores were assigned to the Animal Research Reporting in In Vivo Experiments guideline items: housing and husbandry (9), allocation (11), outcomes (12), interpretation (18) and generalizability (19). Sprague–Dawley rats were the most frequently used (50%) species, and most studies had a sample size of more than 30 (58.33%). A defect dimension of 5 mm was the most common (33.33%). The biological hydroxyapatite composite scaffold was common (50%), and the bioactive factors were bone morphogenetic protein-2 (50%) and recombinant human bone morphogenetic protein-2 (50%). Histomorphometric results showed that bone morphogenetic protein-2 enhanced the capacity to regenerate bone considerably. In addition, scaffolds with bone morphogenetic protein-2 resulted in a significant increase in the blood vessel in the new bone. The findings suggested that data on animal experiments of hydroxyapatite scaffold coated with bone morphogenetic protein-2 in murine calvarial defect models lack homogeneity. Animal experiment should follow the Animal Research Reporting in In Vivo Experiments guidelines to promote the high quality, integrity and reproducibility. This systematic review suggested that bone morphogenetic protein-2 enhanced the capacity to regenerate bone and the angiogenesis in the new bone.
Collapse
Affiliation(s)
- Jian-Hua Zeng
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Peng Qiu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Long Xiong
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Shi-Wei Liu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ling-Hua Ding
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | | | - Jing-Tang Li
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ze-Bu Xiao
- Department of Rehabilitation Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Tao Zhang
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| |
Collapse
|
9
|
Bennett PM, Stewart SK, Dretzke J, Bem D, Penn-Barwell JG. Preclinical therapies to prevent or treat fracture non-union: A systematic review. PLoS One 2018; 13:e0201077. [PMID: 30067783 PMCID: PMC6070249 DOI: 10.1371/journal.pone.0201077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/08/2018] [Indexed: 12/22/2022] Open
Abstract
Background Non-union affects up to 10% of fractures and is associated with substantial morbidity. There is currently no single effective therapy for the treatment or prevention of non-union. Potential treatments are currently selected for clinical trials based on results from limited animal studies, with no attempt to compare results between therapies to determine which have the greatest potential to treat non-union. Aim The aim of this systematic review was to define the range of therapies under investigation at the preclinical stage for the prevention or treatment of fracture non-union. Additionally, through meta-analysis, it aimed to identify the most promising therapies for progression to clinical investigation. Methods MEDLINE and Embase were searched from 1St January 2004 to 10th April 2017 for controlled trials evaluating an intervention to prevent or treat fracture non-union. Data regarding the model used, study intervention and outcome measures were extracted, and risk of bias assessed. Results Of 5,171 records identified, 197 papers describing 204 therapies were included. Of these, the majority were only evaluated once (179/204, 88%), with chitosan tested most commonly (6/204, 3%). Substantial variation existed in model design, length of survival and duration of treatment, with results poorly reported. These factors, as well as a lack of consistently used objective outcome measures, precluded meta-analysis. Conclusion This review highlights the variability and poor methodological reporting of current non-union research. The authors call for a consensus on the standardisation of animal models investigating non-union, and suggest journals apply stringent criteria when considering animal work for publication.
Collapse
Affiliation(s)
- Philippa M. Bennett
- Institute of Naval Medicine, Crescent Road, Alverstoke, Hampshire, United Kingdom
- * E-mail:
| | - Sarah K. Stewart
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| | - Janine Dretzke
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Danai Bem
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
10
|
Daugela P, Pranskunas M, Juodzbalys G, Liesiene J, Baniukaitiene O, Afonso A, Sousa Gomes P. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study. J Tissue Eng Regen Med 2018; 12:1195-1208. [PMID: 29498222 DOI: 10.1002/term.2651] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/05/2017] [Accepted: 02/17/2018] [Indexed: 12/19/2022]
Abstract
Cellulose scaffolds containing nano- or micro-hydroxyapatite (nHA or μHA) were prepared by the regeneration of cellulose from its acetylated derivative and the mechanical immobilization of inorganic particles, followed by freeze-drying. Microtomographic (micro-computed tomography) evaluation revealed that both scaffolds presented a highly interconnected porous structure, with a mean pore diameter of 490 ± 94 and 540 ± 132 μm for cellulose/nHA and cellulose/μHA, respectively. In vitro and in vivo characterizations of the developed scaffolds were investigated. Commercially available bone allograft was used as a control material. For the in vitro characterization, osteoblastic cell cultures were used and characterized over time to evaluate cell adhesion, metabolic activity, and functional output (alkaline phosphatase activity and osteoblastic gene expression). The results revealed greater spreading cell distribution alongside an increased number of filopodia, higher MTT values, and significantly increased expression of osteoblastic genes (Runx-2, alkaline phosphatase, and BMP-2) for cellulose/nHA, compared with cellulose/μHA and the control. The in vivo biocompatibility was evaluated in a rabbit calvarial defect model. The investigated scaffolds were implanted in circular rabbit calvaria defects. Four- and 12-week bone biopsies were investigated using micro-computed tomography and histological analysis. Although both cellulose/HA scaffolds outperformed the assayed control, a significantly higher amount of newly formed mineralized tissue was found within the defects loaded with cellulose/nHA. Within the limitations of this study, the developed cellulose/HA scaffolds showed promising results for bone regeneration applications. The biological response to the scaffold seems to be greatly dependent on the HA particles' characteristics, with cellulose scaffolds loaded with nHA eliciting an enhanced bone response.
Collapse
Affiliation(s)
- Povilas Daugela
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Pranskunas
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintaras Juodzbalys
- Department of Oral and Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jolanta Liesiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Odeta Baniukaitiene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Américo Afonso
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Pedro Sousa Gomes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Manchón A, Alkhraisat MH, Rueda-Rodriguez C, Pintado C, Prados-Frutos JC, Torres J, Lopez Cabarcos E. Silicon bioceramic loaded with vancomycin stimulates bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2017; 106:2307-2315. [PMID: 29098767 DOI: 10.1002/jbm.b.34040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 02/01/2023]
Abstract
Porous ceramics doped with silicon and pure β-TCP were analyzed in terms of internal microstructure, cell behavior, and the percentage of newly formed bone. Additionally the materials were tested to determine which of the two had better properties to load and release vancomycin hydrochloride. Internal pore distribution and porosity were determined through high pressure mercury porosimetry and the specific surface area was measured by the Brunauer Emmet-Teller method. The proliferation and viability of the human osteoblast-like cell line MG-63 was studied to validate both materials. The materials were tested on eight New Zealand rabbits which created defects, 10 mm in diameter, in the calvaria bone. After 8 and 12 weeks a histological and histomorphometric analysis was performed. Si-β-TCP showed a higher porosity and specific surface area. The cytocompatibility test revealed acceptable results in terms of proliferation and viability whereas the percentage of new bone was higher in Si-β-TCP with a two-time study being statistically significant with 12 weeks of healing (p < 0.05).The vancomycin loaded within the ceramic scaffolds were burst released and the material had the ability to inhibit bacterial growth. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2307-2315, 2018.
Collapse
Affiliation(s)
- Angel Manchón
- Department of Stomatology, Faculty of Health Sciences, URJC, 28922, Alcorcon-Madrid, Spain
| | - Mohammad H Alkhraisat
- Department of Physical-Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Carmen Rueda-Rodriguez
- Department of Physical-Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Concepción Pintado
- Departament of Microbiology II, Facultad de Farmacia, UCM, Madrid, Spain
| | - J C Prados-Frutos
- Department of Stomatology, Faculty of Health Sciences, URJC, 28922, Alcorcon-Madrid, Spain
| | - Jesus Torres
- Department of Stomatology, Faculty of Health Sciences, URJC, 28922, Alcorcon-Madrid, Spain
| | - Enrique Lopez Cabarcos
- Department of Physical-Chemistry II, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
12
|
Pezzotti G, Marin E, Adachi T, Rondinella A, Boschetto F, Zhu W, Sugano N, Bock RM, McEntire B, Bal SB. Bioactive silicon nitride: A new therapeutic material for osteoarthropathy. Sci Rep 2017; 7:44848. [PMID: 28327664 PMCID: PMC5361106 DOI: 10.1038/srep44848] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant's surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Yam daoka, Suita, 565-0871 Osaka, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Alfredo Rondinella
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | - Wenliang Zhu
- Department of Medical Engineering for Treatment of Bone and Joint Disorders, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
| | - Nobuhiko Sugano
- Department of Medical Engineering for Treatment of Bone and Joint Disorders, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
| | - Ryan M. Bock
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, United States
| | - Bryan McEntire
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, United States
| | - Sonny B. Bal
- Amedica Corporation, 1885 West 2100 South, Salt Lake City, UT 84119, United States
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
13
|
Zhou X, Moussa FM, Mankoci S, Ustriyana P, Zhang N, Abdelmagid S, Molenda J, Murphy WL, Safadi FF, Sahai N. Orthosilicic acid, Si(OH)4, stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation. Acta Biomater 2016; 39:192-202. [PMID: 27163405 DOI: 10.1016/j.actbio.2016.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Accumulating evidence over the last 40years suggests that silicate from dietary as well as silicate-containing biomaterials is beneficial to bone formation. However, the exact biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that orthosilicic acid (Si(OH)4) stimulated human mesenchymal stem cells (hMSCs) osteoblastic differentiation in vitro. To elucidate the possible molecular mechanisms, differential microRNA microarray analysis was used to show that Si(OH)4 significantly up-regulated microRNA-146a (miR-146a) expression during hMSC osteogenic differentiation. Si(OH)4 induced miR-146a expression profiling was further validated by quantitative RT-PCR (qRT-PCR), which indicated miR-146a was up-regulated during the late stages of hMSC osteogenic differentiation. Inhibition of miR-146a function by anti-miR-146a suppressed osteogenic differentiation of MC3T3 pre-osteoblasts, whereas Si(OH)4 treatment promoted osteoblast-specific genes transcription, alkaline phosphatase (ALP) production, and mineralization. Furthermore, luciferase reporter assay, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence showed that Si(OH)4 decreased TNFα-induced activation of NF-κB, a signal transduction pathway that inhibits osteoblastic bone formation, through the known miR-146a negative feedback loop. Our studies established a mechanism for Si(OH)4 to promote osteogenesis by antagonizing NF-κB activation via miR-146a, which might be interesting to guide the design of osteo-inductive biomaterials for treatments of bone defects in humans. STATEMENT OF SIGNIFICANCE Accumulating evidence over 40years suggests that silicate is beneficial to bone formation. However, the biological role(s) of silicate on bone cells are still unclear and controversial. Here, we report that Si(OH)4, the simplest form of silicate, can stimulate human mesenchymal stem cells osteoblastic differentiation. We identified that miR-146a is the expression signature in bone cells treated with Si(OH)4. Further analysis of miR-146a in bone cells reveals that Si(OH)4 upregulates miR-146a to antagonize the activation of NF-κB. Si(OH)4 was also shown to deactivate the same NF-κB pathway to suppress osteoclast formation. Our findings are important to the development of third-generation cell-and gene affecting biomaterials, and suggest silicate and miR-146a can be used as pharmaceuticals for bone fracture prevention and therapy.
Collapse
|
14
|
Delgado-Ruiz RA, Calvo Guirado JL, Romanos GE. Bone grafting materials in critical defects in rabbit calvariae. A systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res 2015; 29:620-634. [DOI: 10.1111/clr.12614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | - José Luis Calvo Guirado
- International Dentistry Research Cathedra; San Antonio Catholic University of Murcia (UCAM); Murcia Spain
| | | |
Collapse
|